K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: BHCK

Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: BHCK là hình bình hành

=>BH//CK và BK//CH

=>BK vuông góc BA và CK vuông góc CA

c: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>ME=MF

=>ΔMEF cân tại M

a: Xét tứ giác BGCN có 

D là trung điểm của đường chéo BC

D là trung điểm của đường chéo GN

Do đó: BGCN là hình bình hành

22 tháng 8 2023

(a) \(I,M\) là trung điểm của \(AB,BC\Rightarrow IM\) là đường trung bình của \(\Delta ABC\Rightarrow\left\{{}\begin{matrix}IM\left|\right|AC\Leftrightarrow MD\left|\right|AC\left(1\right)\\IM=\dfrac{1}{2}AC\end{matrix}\right.\)

Lại có: \(IM=ID\Rightarrow MD=2IM=2\cdot\dfrac{1}{2}AC=AC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow ADMC\) là hình bình hành (điều phải chứng minh).

 

(b) \(\left\{{}\begin{matrix}MI\left|\right|AC\left(cmt\right)\\AC\perp AB\left(gt\right)\end{matrix}\right.\Rightarrow MI\perp AB\Rightarrow\hat{AIM}=90^o\left(3\right)\).

\(M,K\) là trung điểm của \(BC,AC\Rightarrow MK\) là đường trung bình của \(\Delta ABC\Rightarrow MK\left|\right|AB\), mà \(AB\perp AC\left(gt\right)\Rightarrow MK\perp AC\Rightarrow\hat{AKM}=90^o\left(4\right)\).

Ta cũng có: \(\hat{A}=90^o\left(5\right)\).

Từ \(\left(3\right),\left(4\right),\left(5\right)\Rightarrow AIMK\) là hình chữ nhật (điều phải chứng minh).

 

(c) Do \(AIMK\) là hình chữ nhật (chứng minh trên) nên \(\left\{{}\begin{matrix}AK\left|\right|MI\Leftrightarrow AK\left|\right|ID\\AK=MI=ID\end{matrix}\right.\Rightarrow AKID\) là hình bình hành \(\Rightarrow IK\left|\right|AD\left(6\right)\).

Lại có: \(I,K\) là trung điểm của \(MD,MQ\Rightarrow IK\) là đường trung bình của \(\Delta MQD\Rightarrow IK\left|\right|QD\left(7\right)\)

Từ \(\left(6\right),\left(7\right)\Rightarrow Q,A,D\) thẳng hàng (điều phải chứng minh).

22 tháng 8 2023

12 tháng 11 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

13 tháng 11 2021

Còn câu b nữa bạn ơi!

 

a: Xét tứ giác AFCD có

E là trung điểm chung của AC và FD

=>AFCD là hình bình hành

b: EG//AB

AB\(\perp\)AC

Do đó: EG\(\perp\)AC

c: 

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

 

4 tháng 11 2023

cho mình xin hình với ạ cảm ơn nhìu

23 tháng 11 2021

{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

23 tháng 11 2021

chết hình như sai thì phải     ucche

                 

a: ΔBEK vuông tại E có góc EBK=45 độ

nên ΔEBK vuông cân tại E

=>EK=BE=CF

Xét tứ giác EKFC có

EK//FC

EK=FC

=>EKFC là hình bình hành