K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

a: Xét tứ giác BHCD có

M là trung điểm chung của BC và HD

=>BHCD là hình bình hành

b: BHCD là hình bình hành

=>BH//CD và BD//CH

BH//CD

CA\(\perp\)BH

Do đó: \(CA\perp\)CD

=>ΔACD vuông tại C

BD//CH

AB\(\perp\)CH

Do đó: AB\(\perp\)BD

=>ΔABD vuông tại B

c: ΔBAD vuông tại B

mà BI là đường trung tuyến

nên IB=IA=ID(1)

ΔCAD vuông tại C

mà CI là đường trung tuyến

nên CI=IA=ID(2)

Từ (1) và (2) suy ra IA=IB=IC=ID

18 tháng 10

a) Chứng minh tứ giác BHCD là hình bình hành:

Xét tứ giác BHCD:

    M là trung điểm của BC (gt)

   M là trung điểm của HD (gt)

    *Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.

    * Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).

b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:

 

Xét hình bình hành BHCD:

   BH // CD (tính chất hình bình hành)

   CH // BD (tính chất hình bình hành)

Xét tam giác ABC:

    * AF là đường cao (gt) => AF vuông góc với BC

    * Mà BH // CD (cmt) => AF vuông góc với CD

Tương tự:

     CH // BD (cmt) => AF vuông góc với BD

Kết luận:

    * Tam giác ABD vuông tại B (AF vuông góc với BD)

    * Tam giác ACD vuông tại C (AF vuông góc với CD)

 

**c) Chứng minh IA=IB=IC=ID:**

 

* **Xét tam giác AHD:**

    * M là trung điểm của HD (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác AHD

    * Vậy IA = ID (tính chất đường trung tuyến trong tam giác)

* **Xét tam giác BCD:**

    * M là trung điểm của BC (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác BCD

    * Vậy IB = IC (tính chất đường trung tuyến trong tam giác)

* **Kết luận:**

    * IA = IB = IC = ID

 

**Tóm lại:**

 

* Tứ giác BHCD là hình bình hành.

* Tam giác ABD vuông tại B và tam giác ACD vuông tại C. 

* IA = IB = IC = ID.

 

a: Xét tứ giác BECM có 

D là trung điểm của đường chéo BC

D là trung điểm của đường chéo ME

Do đó: BECM là hình bình hành

Suy ra: BM//EC và BM=EC

mà AE=EC

nên BM//AE và BM=AE

Xét tứ giác AEMB có 

AE//BM

AE=MB

Do đó: AEMB là hình bình hành

b: Ta có: AEMB là hình bình hành

nên Hai đường chéo AM và BE cắt nhau tại trung điểm của mỗi đường

Suy ra: O là trung điểm chung của AM và BE

Xét ΔMAE có

D là trung điểm của ME

O là trung điểm của AM

Do đó: DO là đường trung bình của ΔMAE

Suy ra: DO//AE

a: Xét tứ giác ABCD có

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo BD

Do đó: ABCD là hình bình hành

b: Xét tứ giác AKCH có 

I là trung điểm của đường chéo AC

I là trung điểm của đường chéo KH

Do đó: AKCH là hình bình hành

Suy ra: AK=HC

24 tháng 10 2023

 

a) Do ABCD là hình vuông (gt)

\(\Rightarrow AB=AD\)

\(\widehat{ABM}=\widehat{ADN}=90^0\)

Xét hai tam giác vuông: \(\Delta ABM\) và \(\Delta ADN\) có:

\(AB=AD\left(cmt\right)\)

\(BM=DN\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta ADN\) (hai cạnh góc vuông)

\(\Rightarrow AM=AN\) (hai cạnh tương ứng)

\(\widehat{BAM}=\widehat{DAN}\) (hai góc tương ứng)

Ta có:

\(\widehat{BAM}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{DAN}+\widehat{DAM}=90^0\)

\(\Rightarrow\widehat{MAN}=90^0\)

\(\Delta AMN\) có:

\(AM=AN\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) cân tại A

Mà \(\widehat{MAN}=90^0\left(cmt\right)\)

\(\Rightarrow\Delta AMN\) vuông cân tại A

b) Do \(\Delta AMN\) cân tại A

E là trung điểm của MN

\(\Rightarrow AE\) là đường trung tuyến, cũng là đường cao của \(\Delta AMN\)

\(\Rightarrow AE\perp MN\)

\(\Rightarrow EF\perp MN\)

Xét hai tam giác vuông: \(\Delta FEM\) và \(\Delta FEN\) có:

\(EM=EN\left(gt\right)\)

\(EF\) là cạnh chung

\(\Rightarrow\Delta FEM=\Delta FEN\) (hai cạnh góc vuông)

\(\Rightarrow FM=FN\) (hai cạnh tương ứng)

Xét \(\Delta FAN\) và \(\Delta FAM\) có:

\(FA\) là cạnh chung

\(FN=FM\left(cmt\right)\)

\(AN=AM\left(cmt\right)\)

\(\Rightarrow\Delta FAN=\Delta FAM\left(c-c-c\right)\)

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC