Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác KNCM có
KN//CM
KM//CN
=>KNCM là hình bình hành
=>KN=CM
b: Xét tứ giác KNDC có
KN//CD
KN=CD
=>KNDC là hình bình hành
=>KD cắt NC tại trung điểm của mỗi dường
=>IN=IC
a: Xét ΔABC có
K là trung điểm của AB
KN//BC
Do đó: N là trung điểm của AC
Xét ΔABC có
N là trung điểm của AC
NM//AB
Do đó: M là trung điểm của BC
Xét tứ giác KNMB có
KN//MB
MN//KB
Do đó: KNMB là hình bình hành
Suy ra: KN=MB=MC
b: Xét tứ giác KMCN có
KN//MC
KN=MC
Do đó:KMCN là hình bình hành
Suy ra: KM=NC
c: Xét tứ giác KNDC có
KN//DC
KN=DC
Do đó: KNDC là hình bình hành
Suy ra: Hai đường chéo KD và NC cắt nhau tại trung điểm của mỗi đường
=>IN=IC
a) Xét ΔABC có
K là trung điểm của AB(gt)
KN//BC(gt)
Do đó: N là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
N là trung điểm của AC(cmt)
NM//AB(gt)
Do đó: M là trung điểm của BC(Định lí 1 về đường trung bình của tam giác)
Xét tứ giác KNMB có
KN//MB(gt)
NM//KB(gt)
Do đó: KNMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: KN=BM(Hai cạnh đối)
mà BM=CM(M là trung điểm của BC)
nên KN=CM(đpcm)
a: Xét ΔBIE và ΔMIA có
\(\widehat{IEB}=\widehat{IAM}\)(hai góc so le trong, BE//AM)
IE=IA
\(\widehat{BIE}=\widehat{MIA}\)(hai góc đối đỉnh)
Do đó: ΔBIE=ΔMIA
=>BE=AM
b: Xét ΔIAN và ΔIEC có
IA=IE
\(\widehat{AIN}=\widehat{EIC}\)(hai góc đối đỉnh)
IN=IC
Do đó: ΔIAN=ΔIEC
=>\(\widehat{IAN}=\widehat{IEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//EC
Ta có: AN//EC
AM//EC
AN,AM có điểm chung là A
Do đó: N,A,M thẳng hàng
a: Xét tứ giác KNCM có
KN//CM
KM//CN
=>KNCM là hbh
=>KN=CM
b: Xét tứ giác KNDC có
KN//DC
KN=CD
=>KNDC là hbh
=>KD cắt NC tại trung điểm của mỗi đường
=>IC=IN