Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì D là điểm đối xứng với A qua \(M\left(gt\right)\)
=> M là trung điểm của \(AD.\)
=> \(AM=DM.\)
Xét 2 \(\Delta\) \(AMB\) và \(DMC\) có:
\(AM=DM\left(cmt\right)\)
\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
c) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)
=> \(AB=DC\) (2 cạnh tương ứng).
Lại có: \(\widehat{ABM}=\widehat{DCM}\left(cmt\right)\)
=> \(\widehat{ABC}=\widehat{DCB}.\)
Xét 2 \(\Delta\) \(ABC\) và \(DCB\) có:
\(AB=DC\left(cmt\right)\)
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta ABC=\Delta DCB\left(c-g-c\right)\) (1).
=> \(\widehat{ACB}=\widehat{DBC}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AC\) // \(BD.\)
Từ (1) => \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng).
Mà \(\widehat{BAC}=90^0\left(gt\right)\)
=> \(\widehat{CDB}=90^0.\)
=> \(CD\perp BD.\)
Mà \(AC\) // \(BD\left(cmt\right)\)
=> \(AC\perp CD.\)
d) Có 2 cách:
Cách 1:
Ta có: \(AC\perp CD\left(cmt\right)\)
=> \(\widehat{DCA}=90^0.\)
Mà \(\widehat{BAC}=90^0\left(gt\right).\)
=> \(\widehat{BAC}=\widehat{DCA}=90^0.\)
Xét 2 \(\Delta\) vuông \(ABC\) và \(CDA\) có:
\(\widehat{BAC}=\widehat{DCA}=90^0\)
\(AB=CD\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta CDA\) (cạnh huyền - cạnh góc vuông).
Cách 2:
Vì \(AB\) // \(CD\left(cmt\right)\)
=> \(\widehat{ABC}=\widehat{CDA}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) \(ABC\) và \(CDA\) có:
\(AB=CD\left(cmt\right)\)
\(\widehat{ABC}=\widehat{CDA}\left(cmt\right)\)
Cạnh AC chung
=> \(\Delta ABC=\Delta CDA\left(c-g-c\right).\)
e) Theo câu d) ta có \(\Delta ABC=\Delta CDA.\)
=> \(BC=AD\) (2 cạnh tương ứng).
Ta có: M là trung điểm của \(AD\left(cmt\right)\)
=> \(AM=\frac{1}{2}AD\) (tính chất trung điểm).
Mà \(AD=BC\left(cmt\right)\)
=> \(AM=\frac{1}{2}BC\left(đpcm\right).\)
Chúc bạn học tốt!
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
Xét ΔAID=ΔBIC có:
IA=IB(gt)
IC=ID(gt)
góc AID=góc CIB
Vậy ΔAID=ΔBIC (c-g-c)
=>góc IBC=góc DAB (2 góc tương ứng)
Mà góc IBC và góc DAB là hai góc so le trong
=>AD//BC (dấu hiệu nhận biết)
Vì ΔAID=ΔBIC
=>AD=CB (2 cạnh tương ứng)
Mà M,N lần lượt là trung điểm của AD và BC=>AM=NB
Xét t/g AIM và t/g BIN có :
AI=IB(gt)
NB=AM(cmt)
góc MAI=góc IBN (cmt)
Vậy t/g AIM=t/g BIN (c-g-c)
=>MI=NI (2 cạnh tương ứng)
Vì t/g AIM=t/g BIN =>góc AIM=góc NIB (2 góc tương ứng)
Mà góc AIM+góc AIN=180 độ
=>góc NIB+góc AIN=180 độ
=>M,I,N thẳng hàng
Có phải toán 8 không bạn? Gọi D là điểm đối xứng với M và N qua đâu bạn?