Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Xét góc DAC và góc EAB có
góc ADC = 90 độ + góc ABC (gt) (1)
góc ABE = 90 độ +góc BAC (2)
từ (1) và (2) => góc DAC = góc EAB
Xét tam giác DAC và tam giác EAB có
AD =AB ( vì tam giác ABD vuông cân )
góc DAC = góc BAE
AC =AE
=> tam giác DAC = tam giác EAB ( cạnh - góc - cạnh )
=> DC=EB ( cặp cạnh tương ứng )
+> chứng minh BE vuông góc với CD
Gọi O là giao điểm của DC và BE
Vì góc O1 = O2 ( đối đỉnh )
góc C1 = E1 ( vì tam giác DAC = tam giác EAB ( cmt )
=> góc O = A1 = 90 độ
=> CD vuông góc với BE ( điều phải chứng minh )
mik làm đc mỗi câu b)
Gọi H là chân đường vuông góc hạ từ M xuống tia phân giác ^BAC. Tam giác ADE có AH vừa là phân giác vùa là đường cao nên cân
tại A.
Qua B vẽ BF//CE (F thuộc DE) => tam giác BDF cân tại B => BD = BF (1)
Mặt khác xét 2 tam giác BMF và CME có :
BM = CM; ^BMF = ^CME ( đối đỉnh); ^MBF = ^MCE ( so le trong)
=> tam giác BMF = tg
CME => BF = CE (2)
Từ (1) và (2) => đpcm
*Hình của mình có thể không đẹp lắm! Thông cảm ^_^ *
a, +,Xét 2 tam giác vuông AEC và ADB ta có
A: góc chung
góc AEC= góc ADB (=90 độ)
=> Tam giác AEC= tam giác ADB
=> AD=AE
b,+,Vì tam giác AEC= tam giác ADB nên: góc ABD= góc ACE.
+,Ta có: ABC= ABD+DBC
ACB= ACE+ECB
mà ABC= ACB, ABD=ACE nên DBC= ECB.
+,Vì góc DBC= góc ECB nên tam giác BIC cân tại I --> BI=CI.
+,Xét tam giác ABI và tam giác ACI có:
AB=AC
góc ABI= góc ACI
BI=CI
=> tam giác ABI= tam giác ACI
=> góc BAI= góc CAI
=> AI là phân giác của BAC. (1)
c, +,Ta có: góc AED= 180 độ- góc A/ 2
góc ABC= 180 độ- góc A/ 2
=> AED=ABC (vị trí đồng vị)
=> DE//BC.
d, +,Ta có tam giác ABC cân mà M là trung điểm BC nên AM vừa là đường trung tuyến vừa là đường phân giác (2)
+,Từ (1) và (2) suy ra: A,I,M thẳng hàng.
*Mình không biết là đúng hay không, có gì bạn bảo mình nha!*
*Phần e mình không biết làm, thông cảm xíu ^_^ *
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔBMD vuông tại D và ΔCME vuông tại E có
MB=MC
\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)
Do đó: ΔBMD=ΔCME
=>BD=CE
Ta có: BD\(\perp\)AM
CE\(\perp\)AM
Do đó: BD//CE
b: Xét tứ giác BDCE có
BD//CE
BD=CE
Do đó: BDCE là hình bình hành
=>BE//CD và BE=CD
c: \(AD+AE=AD+AD+DE\)
\(=2AD+2DM\)
\(=2\left(AD+DM\right)=2AM\)
Cảm ơn bạn, nhưng mà bạn chỉ giúp mình hình của bài này được không.