K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

hình vẽ đấy nhé

GIAI

a ) xét tam giác AMB và tam giác CMN có

AM = MC ( M là trung điểm của AC )

góc AMB = goc CMN ( đối đỉnh )

MB = MN ( M là trung điểm của BN )

=> tam giác AMB = tam giác CMN ( c.g.c)

=> AB = CN ( 2 cạnh tương ứng )

=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )

=> CN vuông góc với AC (dpcm )

b ) chúng minh tương tự

=> tam giác ANM = tam giác CBM ( c.g.c )

=> AN = BC ( 2 cạnh tương ứng )

=> góc ANM = góc CBM ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC

=> AN song song BC ( dpcm)

NHANH NHA

10 tháng 1 2017

a) Xét tam giác BMA và tam giác CMN:

  BM=MC ( M là trung điểm của BC)

  \(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)

AM=MN ( M là trung điểm của AN)

=>Tam giác BMA=tam giác CMN(c-g-c)

 =>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)

mà chúng nằm ở vị trí so le trong

 =>BA//NC

b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC

10 tháng 1 2018

A B M N C 1 2

 Xét ΔAMB và ΔNMC có :

MA=MN ( gt)

\(\widehat{M_1}\)\(\widehat{M_2}\)(2 góc đối đỉnh )

MB =MC (gt)

Suy ra: ΔAMB=ΔNMC(c.g.c)

⇒ CN = AB ( 2 cạnh tương ứng )

⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )

22 tháng 10 2021

a: Xét ΔCMN và ΔAMB có 

MC=MA

\(\widehat{CMN}=\widehat{AMB}\)

MN=MB

Do đó: ΔCMN=ΔAMB

Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB

hay CN\(\perp\)AC

a: Xét ΔABI và ΔACI có 

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔABI=ΔACI

Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường phân giác

b: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

c: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

6 tháng 1 2022

mình chưa học đến bài tam giác cân thì có bài làm nào khác không ạ?

 

21 tháng 12 2021

\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)

\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)

\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)

\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)

Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng

3 tháng 3 2018

a) Xét tam giác ABM và tam giác NCM  có :

              BM = CM ( GT )

     góc BMA = góc NMC ( đối đỉnh )

              AM = NM  ( GT )

=>   tam giác ABM = tam giác NCM ( c-g-c )

=>   AB =NC ( cặp cạnh tương ứng )

tam giác ABM = tam giác NCM 

=>  góc ABM = góc NCM ( cặp góc tương ứng )

mà 2 góc này ở vị trí sole trong 

=> AB // CN ( đpcm )

b)   ta có góc ABM = góc NCM 

góc BAM = góc CNM

=> góc MAC = góc MCA 

=> tam giác AMC cân => AM =MC 

Mà M  là trung điểm của BC ( BM = MC )

AM = 1/2 BC ( đpcm )

3 tháng 3 2018

A B C M N