Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|\Leftrightarrow OA=OB=OC\Leftrightarrow O\) là tâm đường tròn ngoại tiếp tam giác ABC (1)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\Leftrightarrow O\) là trọng tâm tam giác ABC (2)
(1); (2) \(\Rightarrow\) ABC là tam giác đều
\(\Rightarrow\widehat{AOB}=\widehat{BOC}=\widehat{COA}=120^0\)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)⇒ O là trọng tâm tam giác ABC
\(\overrightarrow{K\text{A}}+2\overrightarrow{KB}=\overrightarrow{CB}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KB}+\overrightarrow{BC}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)
⇒ K là trọng tâm tam giác ABC
Câu cuối chịu :))
Bẹn tự vẽ hình nhé
Vì A' đối xứng với B qua A => AA' =AB
=. \(\overrightarrow{A'A}=\overrightarrow{AB}\)
Vì B' đối xứng với C qua B => \(\overrightarrow{B'B}=\overrightarrow{BC}\)
Vì C' đối xứng với A qua C => \(\overrightarrow{C'C}=\overrightarrow{CA}\)
Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\left(\overrightarrow{OA'}+\overrightarrow{A'A}\right)+\left(\overrightarrow{OB'}+\overrightarrow{B'B}\right)+\left(\overrightarrow{OC'}+\overrightarrow{C'C}\right)\)
\(=\left(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\right)+\left(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}\right)\)
Lại có: \(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CA}=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=0\)
\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}+0=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
1. MA + MC = MB +MD
<=> MA + MC = MA + AB + MC + CD
<=>MA + MC = MA + MC +0
2.
RJ+IQ+PS=RA+ẠJ+IB+BQ+PC+CS
= (RA+CS) + (AJ+IB) + (BQ+PC)
= 0+0+0=0
a,vì N là trung điểm AC nên 2BN=BA+BC ta có
MA+NB+PC=1/2BA+1/2BC+NB=1/2 (BA+BC)+NB=1/2×2×BN+NB=BN+NB=0 (TM đề bài )
b, vì M;N;P làtrung điểm AB;AC;BC
2OM+2ON+2OP=OA+OB+OA+OC+OB+OC
=2OA+2OB+2OC
suy ra OM+ON+OP=OA+OB+OC
c,
Cm tương tự
2OB=OB'+OC
2OA=OA'+OB
2OC=OA+OC'
suy ra
2OA+2OB+2OC=OA+OB+OC+OA'+OB'+OC'
suy ra OA+OB+OC=OA'+OB'+OC'