K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
a. 

Xét tam giác $ABH$ và $ACH$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$AH$ chung 

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle ABH=\triangle ACH$ (ch-cgv) 

b. 

Do $BD\parallel AC$ nên $\widehat{DBH}=\widehat{HCA}=\widehat{ABH}$ (hai góc so le trong)

Xét tam giác $DBH$ và $ABH$ có:
$BH$ chung

$\widehat{DBH}=\widehat{ABH}$ (cmt) 

$\widehat{BHD}=\widehat{BHA}=90^0$

$\Rightarrow \triangle DBH=\triangle ABH$ (g.c.g)

$\Rightarrow DB=AB$ (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Hình vẽ:

Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả

19 tháng 3 2020

mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng 

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

a: Xét ΔABC và ΔCDA có

\(\widehat{ACB}=\widehat{CAD}\)

AC chung

\(\widehat{CAB}=\widehat{ACD}\)

Do đó: ΔABC=ΔCDA

b: Xét tứ giác ABCD có 

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

Suy ra: Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của AC

c: Xét ΔAMI và ΔCMK có 

\(\widehat{IAM}=\widehat{KCM}\)

AM=CM

\(\widehat{AMI}=\widehat{CMK}\)

Do đó: ΔAMI=ΔCMK

Suy ra: MI=MK

mà M,I,K thẳng hàng

nên M là trung điểm của IK

a: Xét tứ giác ABED có

ED//AB

AD//BE

=>ABED là hình bình hành

=>AE cắt BD tại trung điểm của mỗi đường

=>IA=IE

b: DI=DB/2=BC/4

=>CD=2DI

=>CD=2/3CI

Xét ΔCAE có

CI là trung tuyến

CD=2/3CI

=>D là trọng tâm

=>A,D,K thẳng hàng