Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì hình thang DEFB có: DE // BF
=> DB = EF
mà AD = DB (D là trung điểm của AB)
=> EF = AD
b) Xét \(\Delta ADEvà\Delta EFCcó:\)
\(\widehat{A}=\widehat{FEC}\)(đồng vị)
AD = EF (cmt)
\(\widehat{ADE}=\widehat{EFC}\) (=\(\widehat{B}\) )
Do đó: \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)
c) Vì \(\Delta ADE=\Delta EFC\left(cmt\right)\)
=> AE = EC (hai cạnh tương ứng)
Câu b hình như là tam giác ADE=tam giác EFC đó mk nghĩ vậy
Em tham khảo tại đây nhé.
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
câu a ta có : <MAE = 90
suy ra tam giác MAE là tam giác vuông :< AME + <MEA = 90 ĐỘ ( đ/lí tổng 3 góc áp dụng vào tam giác vuông )
gọi n là giao điểm của EH và CD
vì <MND =90 độ suy ra <NMD +<MPN=90độ
vì cùng phụ nhau với < m suy ra <MEA =<MDN
xét tam giác ACD và tam giác AME :
AD =AE (GT)
<MEA=<MDN (cmt)
<CAD =<MAE =90độ (do AC vuông góc với MB )
SUY RA TAM GIÁC ACD = TAM GIÁC AME(G.C.G)