Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b hình như là tam giác ADE=tam giác EFC đó mk nghĩ vậy
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
a) Nối DF
Vì \(DE//BC;F\in BC\Rightarrow DE//BC\Rightarrow\widehat{D_1}=\widehat{F_1}\). ( so le trong )
Tương tự :EF // BD \(\Rightarrow\widehat{D_2}=\widehat{F_2}\)
Xét \(\Delta DEF\) và \(\Delta FBD\) có :
\(\widehat{D_1}=\widehat{F_1}\left(cmt\right)\)
Cạnh DF chung
\(\widehat{D_2}=\widehat{F_2\left(cmt\right)}\)
Suy ra : \(\Delta DEF=\Delta FBD\left(g.c.g\right)\)
\(\Rightarrow EF=BD\) . Mà \(AD=BD=\frac{1}{2}AB\) ( do D là trung điểm AB )
\(\Rightarrow AD=EF\left(đpcm\right)\)
b) Vì DE // BF nên \(\widehat{D_3}=\widehat{B_1}\) ( đồng vị )
Vì EF// BD nên \(\widehat{F_3}=\widehat{D_1}\) ( đồng vị )
Suy ra : \(\widehat{D_3}=\widehat{F_3}\)
Vì AB // EF nên \(\widehat{A}=\widehat{E_1}\) ( đồng vị )
Lại có : AD = EF ( cm ở câu a )
Do đó : \(\Delta ADE=\Delta EFC\left(g.c.g\right)\)
c) Vì \(\Delta ADE=\Delta EFC\) ( cm ở câu b )
\(\Rightarrow AE=EC\left(đpcm\right)\)
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
D với F. Xét ΔBDF và ΔFDE ta có:
ˆBDF=^DFE (so le trong (Vì AB//EF (gt))
DF cạnh chung
ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))
⇒ΔBDF=ΔFDE (g.c.g)
⇒DB=EF (2 cạnh tương ứng )
Mà DB=DA (D là trung điểm AB)
Suy ra AD=EF
b)Xét ΔADE và ΔEFC ta có:
ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)
AD=EF (cmt)
ˆDAE=ˆFEC(đồng vị của DE//BC)
⇒ΔADE=ΔEFC (g.c.g)
c)Vì ΔADE=ΔEFC (cmt)
Suy ra AE=EC (2 cạnh tương ứng )
HT
thêm 1 câu nữa
d)F là trung điểm của BC
giúp mình với mình cần gắp
a) Vì hình thang DEFB có: DE // BF
=> DB = EF
mà AD = DB (D là trung điểm của AB)
=> EF = AD
b) Xét \(\Delta ADEvà\Delta EFCcó:\)
\(\widehat{A}=\widehat{FEC}\)(đồng vị)
AD = EF (cmt)
\(\widehat{ADE}=\widehat{EFC}\) (=\(\widehat{B}\) )
Do đó: \(\Delta ADE=\Delta EFC\left(g-c-g\right)\)
c) Vì \(\Delta ADE=\Delta EFC\left(cmt\right)\)
=> AE = EC (hai cạnh tương ứng)