K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Sửa đề: Cho tam giác vuông,.... nhé ! (hình minh họa)

A B C D E F

Đặt \(AB=a;AC=b;AD=c\). Kẻ \(DE\) vuông góc \(AB\)\(FD\) vuông góc \(AC\left(E\in AB;F\in AC\right)\)

Ta có: tứ giác \(AFDE\) là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\), AD phân giác trong của \(\widehat{EAF}\) nên \(AFDE\)là hình vuông. Suy ra 

\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{c\sqrt{2}}{2}\). Ta có:

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\frac{1}{2}AB\cdot DE+\frac{1}{2}DF\cdot AC=\frac{1}{2}AC\cdot AB\)

\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)

\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)

15 tháng 6 2017

có cho vuông ko nhỉ

31 tháng 8 2018

A B C D H M c a d b

Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d

Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\) 

Ta có S(ABC) = S(ACD) + S(ABD) 

<=> b.c/2 = HD.b/2 + DM.c/2  <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd

Chia 2 vế cho b.c.d ta có pt cần CM

29 tháng 4 2019

Xét △ABC△ABC vuông tại A, ta có:

BC2 = AB2 + AC2 (Py-ta-go)

BC2 = 212 + 282 = 1225

=> BC = 1225−−−−√=351225=35 cm

Xét △ABC△ABC, có:

AD là tia phân giác

=> BDDC=ABACBDDC=ABAC

Hay: BDAB=DCACBDAB=DCAC

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

BDAB=DCAC=BD+DCAB+AC=BCAB+AC=3521+28=57BDAB=DCAC=BD+DCAB+AC=BCAB+AC=3521+28=57

⇒BD=5AB7=5.217=15⇒BD=5AB7=5.217=15

CD=5AC7=5.287=20CD=5AC7=5.287=20

Vậy ..............

Hoa Tuấn Kiệt  sai hết rồi bạn ơi

20 tháng 4 2019

A A B B C H D

Từ D kẻ DH // AC 

Do DH // AC : \(\Rightarrow\) \(\widehat{D_1}=\widehat{A_2}=60^0\)

Vì AD là đường phân giác \(\widehat{BAC}\):

\(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=60^0\)

\(\Rightarrow\)\(\widehat{D_1}=\widehat{A_1}=60^0\)

\(\Rightarrow\) \(\Delta AH\text{D}\) là tam giác đều

\(\Rightarrow\)\(AH=H\text{D}=A\text{D}\)

Do DH //  AH :

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{H\text{D}}{AC}\)

       \(\frac{AB-AH}{AB}=\frac{H\text{D}}{AC}\)

 \(\frac{AB}{AB}-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1-\frac{AH}{AB}=\frac{H\text{D}}{AC}\)

\(1=\frac{H\text{D}}{AC}+\frac{AH}{AB}\)

\(1=\frac{A\text{D}}{AC}+\frac{A\text{D}}{AB}\) ( VÌ AH = HD = AD )

\(1=A\text{D}.\left(\frac{1}{AC}+\frac{1}{AB}\right)\)

\(\frac{1}{A\text{D}}=\frac{1}{AC}+\frac{1}{AB}\)

\(\Rightarrow\)\(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{A\text{D}}\)( ĐPCM )

19 tháng 2 2021

vẽ đường song song 

Hình tự vẽ =)

Kẻ \(DE//AB\left(E\in AC\right)\)

Vì AD là phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)

Vì \(DE//AB\)

\(\Rightarrow\widehat{ADE}=\widehat{BAD}\)

\(\Rightarrow\widehat{ADE}=\widehat{CAD}\)

\(\Rightarrow\Delta DAE\)cân tại \(E\)

\(\Rightarrow DE=AE\)

Đặt \(DE=AE=a\)

Vì \(DE//AB\)nên theo hệ quả của định lí Talet ,ta có :

\(\frac{DE}{AB}=\frac{CE}{AC}\)

\(\Rightarrow\frac{a}{AB}=\frac{AC-AE}{AC}\)

\(\Rightarrow\frac{a}{AB}=1-\frac{a}{AC}\)

\(\Rightarrow\frac{a}{AB}+\frac{a}{AC}=1\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{a}\)

Mà \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{AD}\)

\(\Rightarrow a=AD\)

\(\Rightarrow DE=AE=AD\)

\(\Rightarrow\Delta DAE\)đều

\(\Rightarrow\widehat{CAD}=60^o\)

\(\Rightarrow\widehat{BAC}=2\widehat{CAD}=2.60^o=120^o\)

Vậy \(\widehat{BAC}=120^o\)