K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

Mk tìm các cạnh của tam giác ABC còn bạn tính chu vi hay diện tích thì mk ko biết nha

Áp dụng định lý Py-ta-gô vào tam giác vuông ABH tại H ta có:

\(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-HB^2=15^2-12^2=81=9^2\Rightarrow AH=9\)

Tiếp tục áp dụng định lý Py-ta-gô vào tam giác vuông AHC ta có:

\(AH^2+HC^2=AC^2\Rightarrow HC^2=AC^2-AH^2=1600=40^2\Rightarrow HC=40\)

\(\Rightarrow BC=12+40=52\)

ok

2 tháng 3 2020

Như QQ

5 tháng 3 2020

undefined

Xét \(\Delta ABH\left(\widehat{AHB}=90^o\right)\) có:

\(AB^2=AH^2+BH^2\) ( theo định lí Py-ta-go)

\(15^2=AH^2+12^2\)

\(\Rightarrow AH^2=81\Rightarrow AH=9\left(cm\right)\)

Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:

\(AC^2=AH^2+HC^2\) (theo định lí Py-ta-go)

\(41^2=9^2+HC^2\)

\(\Rightarrow HC^2=1600\Rightarrow HC=40\left(cm\right)\)

Ta có:\(BC=CH+HB=40+12=52\left(cm\right)\)

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.9.52=234\left(cm^2\right)\)

5 tháng 3 2020

Áp dụng Pitago có

\(AH^2=AB^2-HB^2\Leftrightarrow AH=\sqrt{15^2-12^2}=9\)

Lại có \(HC^2=AC^2-AH^2\Leftrightarrow HC=\sqrt{41^2-9^2}=40\)

Có BC=HB+HC=12+40=52

Có BC,AH tính S easy

19 tháng 7 2021

A B C H 15 12

a, Xét tam giác ABH và tam giác CAH ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA ( cùng phụ ^HAC )

Vậy tam giác ABH ~ tam giác CAH ( g.g )

b, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác AHB vuông tại H 

\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)cm 

* Áp dụng hệ thức : 

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\)cm 

=> BC = HC + HB = 16 + 9 = 25 cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\)cm

a) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔBHA\(\sim\)ΔAHC(g-g)

18 tháng 2 2017

Bài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lý Py – to – go ta có:

4 tháng 1 2019

Bài tập: Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lý Py – to – go ta có:

8 tháng 3 2022

a.Xét tam giác ANH và tam giác AHC, có:

\(\widehat{ANH}=\widehat{AHC}=90^0\)

\(\widehat{NAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{A}\) )

Vậy tam giác ANH đồng dạng tam giác AHC ( g.g )

b. Xét tam giác AHB và tam giác ABC, có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác AHB đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{AB}\)

\(\Leftrightarrow\dfrac{12}{13}=\dfrac{BH}{15}\)

\(\Leftrightarrow13BH=180\)

\(\Leftrightarrow BH=\dfrac{180}{13}cm\)

Xét tam giác AHC và tam giác ABC, có:

\(\widehat{CAB}=\widehat{CHA}=90^0\)

\(\widehat{C}:chung\)

Vậy tam giác AHC đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{CH}{AC}\)

\(\Leftrightarrow\dfrac{12}{15}=\dfrac{CH}{13}\) \(\Leftrightarrow\dfrac{4}{5}=\dfrac{CH}{13}\)

\(\Leftrightarrow5CH=52\)

\(\Leftrightarrow CH=\dfrac{52}{5}cm\)

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. Xét tam giác $AHB$ và $CHA$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{HAB}=\widehat{HCA}$ (cùng phụ với $\widehat{HAC}$)

$\Rightarrow \triangle AHB\sim \triangle CHA$ (g.g)

b.

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

Từ tam giác đồng dạng phần a suy ra $CH=\frac{AH^2}{BH}=\frac{12^2}{9}=16$ (cm) 

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

 

Hình vẽ:

loading...