K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy

7 tháng 9 2021

a, Xét tứ giác AHCK có:

I là trung điểm KH

I là trung điểm AC

Nên tứ giác AHCK là hình bình hành

Lại có: góc H=90 độ do AH là đường cao của tam giác ABC

Vậy tứ giác AHCK là hình chữ nhật

b, Xét tứ giác ABHK có:

AK//CH do H thuộc CB và CH//AK

KA=HB do AK=CH mà AH là đường cao của tam giác cân nên H là trung điểm BC và KA=CH

Vậy tứ giác ABHK là hình bình hành

Câu c Δabc vuông cân thì ahck là hv ( câu này neeus sai thông cmr mk nha câu c này mk làm đại)

12 tháng 12 2021

ABCKHM----

a) Xét tứ giác AHCK ta có:

 Vì O trung điểm AC

K đối xứng vs H qua O => O trung điểm HK

Mà AC và HK cắt nhau tại trung điểm O

=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)

Lại có ^AHC=90( AH là đường cao)

=> AHCK là hcn (hbh có 1 góc vuông)

b) Xét tứ giác ABMC có:

M đối xứng với A qua H => AM là đường trung trực 

=> AB=AC (1)

Mặt khác:M đối xứng vs A qua H=> H trung điểm AM

AH là đường cao của tam giác ABC cân tại A

=> AH là đường trung tuyến của tam giác ABC

=>H là trug điểm BC (HB=HC)

mà AM và BC cắt nhau tại trug điểm H

Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)

Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)

c) Xét tứ giác ABHK có:

Vì HB=HC (cmt)

mà AK=HC ( AKHC là hcn)

=> AK=BH 

Lại có AK//BC (AKHC là hcn)

=>AK//BH 

Nên AKBH là hbh (  2 cạnh đối // và = nhau)

d) VÌ HB=HC=BC/2 (cm câu a)

=> HC=6/2=3 cm

Áp dụng công thức tính S và hcn AKHC ta có:

SAKHC=AH.HC

=> SAKHC=4.3=12 (cm2)

Vậy  SAKHC=12 cm2

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy

16 tháng 12 2021

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

16 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành

\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)

Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)

Do đó AHCK là hình bình hành

Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao

Do đó \(AH\bot HC\)

Vậy AHCK là hình chữ nhật

\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK

Vậy H,M,K thẳng hàng

\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M

Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)

Do đó \(HK//AB\)

Mà \(HK\bot AC\) nên \(AC\bot AB\)

Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!