Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tứ giác AHCK có:
I là trung điểm KH
I là trung điểm AC
Nên tứ giác AHCK là hình bình hành
Lại có: góc H=90 độ do AH là đường cao của tam giác ABC
Vậy tứ giác AHCK là hình chữ nhật
b, Xét tứ giác ABHK có:
AK//CH do H thuộc CB và CH//AK
KA=HB do AK=CH mà AH là đường cao của tam giác cân nên H là trung điểm BC và KA=CH
Vậy tứ giác ABHK là hình bình hành
Câu c Δabc vuông cân thì ahck là hv ( câu này neeus sai thông cmr mk nha câu c này mk làm đại)
a) Xét tứ giác AHCK ta có:
Vì O trung điểm AC
K đối xứng vs H qua O => O trung điểm HK
Mà AC và HK cắt nhau tại trung điểm O
=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)
Lại có ^AHC=90o ( AH là đường cao)
=> AHCK là hcn (hbh có 1 góc vuông)
b) Xét tứ giác ABMC có:
M đối xứng với A qua H => AM là đường trung trực
=> AB=AC (1)
Mặt khác:M đối xứng vs A qua H=> H trung điểm AM
AH là đường cao của tam giác ABC cân tại A
=> AH là đường trung tuyến của tam giác ABC
=>H là trug điểm BC (HB=HC)
mà AM và BC cắt nhau tại trug điểm H
Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)
Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)
c) Xét tứ giác ABHK có:
Vì HB=HC (cmt)
mà AK=HC ( AKHC là hcn)
=> AK=BH
Lại có AK//BC (AKHC là hcn)
=>AK//BH
Nên AKBH là hbh ( 2 cạnh đối // và = nhau)
d) VÌ HB=HC=BC/2 (cm câu a)
=> HC=6/2=3 cm
Áp dụng công thức tính S và hcn AKHC ta có:
SAKHC=AH.HC
=> SAKHC=4.3=12 (cm2)
Vậy SAKHC=12 cm2
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do đó: AMCKlà hình chữ nhật
b: Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét tứ giác AHCM có
I là trung điểm của AC
I là trung điểm của HM
Do đó: AHCM là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCM là hình chữ nhật
a, Vì H,O là trung điểm BC,AC nên OH là đtb tg ABC
Do đó OH//AB hay ABOH là hthang
b, Vì O là trung điểm AC và HK nên AHCK là hbh
Lại có tam giác ABC cân nên AH là trung tuyến đồng thời cũng là đường cao
Do đó \(\widehat{AHC}=90^0\)
Vậy AHCK là hcn
đáp án https://goo.gl/BjYiDy