Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBDE và ΔAFD có
BE=AD
góc EBD=góc DAF
AF=BD
=>ΔBDE=ΔAFD
=>DE=FD
Xét ΔBDE và ΔCEF có
BE=CF
góc DBE=góc ECF
BD=CE
=>ΔBDE=ΔCEF
=>DE=EF=FD
=>ΔDEF đều
Xét ΔDAF và ΔEBD có
DA=EB
góc DAF=góc EBD(=120 độ)
AF=BD
=>ΔDAF=ΔEBD
=>DF=ED
Xét ΔFCE và ΔEBD có
FC=EB
góc FCE=góc EBD
CE=BD
=>ΔFCE=ΔEBD
=>FE=ED
=>FE=ED=DF
=>ΔDEF đều
vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều
Ta có: AB = AD +DB (1)
BC = BE + EC (2)
AC = AF + FC (3)
AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)
AD = BE = CF ( giả thiết) (5)
Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF
Xét ΔADF và ΔBED, ta có:
AD = BE (gt)
∠A =∠B =60o (vì tam giác ABC đều)
AF = BD (chứng minh trên)
suy ra: ΔADF= ΔBED (c.g.c)
⇒ DF=ED (hai cạnh tương ứng) (6)
Xét ΔADF và ΔCFE, ta có:
AD = CF (gt)
∠A =∠C =60o (vì tam giác ABC đều)
AF = CE (chứng minh trên)
suy ra: ΔADF= ΔCFE (c.g.c)
Nên: DF = FE (hai cạnh tương ứng) (7)
Từ (6) và (7) suy ra: DF = ED = FE
Vậy tam giác DFE đều