K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
30 tháng 12 2017

A B C D E O H M F P Q 1 1 K 1 1

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay  là trung điểm của DE (đpcm).

1 tháng 1 2018

Cảm ơn nhé!

12 tháng 3 2020

Sửa đề △ABC có ^CAB = 120o thì mới chứng minh △DEF đều được.

a, Xét △FDA vuông tại F và △EDA vuông tại E

Có: DA là cạnh chung

      ^FAD = ^EAD (gt)

=> △FDA = △EDA (ch-gn)

=> DF = DE (2 cạnh tương ứng)

=> △DEF cân tại D   (1)

Vì AD là phân giác ^CAB => ^CAD = ^BAD = ^CAB : 2 = 120o : 2 = 60o

Xét △FAD vuông tại F có: ^FAD + ^FDA = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> 60o + ^FDA = 90o  => ^FDA = 30o  

Mà ^FDA = ^EDA (△FDA = △EDA)  => ^EDA = 30o

Ta có: ^FDE = ^FDA + ^EDA = 30o + 30o = 60o  (2)

Từ (1) và (2) => △DEF đều

b, Ta có: AI = AF + FI  và AK = AE + EK

Mà AF = AE (△FDA = △EDA) ; FI = EK (gt)

=> AI = AK

Xét △IAD và △KAD 

Có: AI = AK (cmt)

  ^IAD = ^KAD (gt)

   AD là cạnh chung

=> △IAD = △KAD (c.g.c)

=> ID = KD (2 cạnh tương ứng)

=> △IDK cân tại D

c, AD // CM (gt) => ^DAB = ^CMB (2 góc đồng vị)

Mà ^DAB = 60o  => ^CMB = 60 => ^CMA = 60o  (3)

Ta có: ^CAM + ^CAB = 180o (2 góc kề bù)

=> ^CAM + 120o = 180o   => ^CAM = 60o   (4)

Từ (3) , (4) => ^CMA = ^CAM => △CMA cân tại C mà ^CMA = 60o  => △MAC đều 

=> AC = AM = MC

Vì △ vuông FAD có: ^FDA = 30o (cmt)

=> AD = 2 . AF 

=> AD = 2 . (AC - CF)

=> AD = 2 . (CM - CF) = 2 . (m - n)

25 tháng 1 2018

A C B D E F M N P H I K O

Ta có: \(\Delta\)ABC đều, D\(\in\)AB, DE\(\perp\)AB, E\(\in\)BC

=> \(\Delta\)BDE có các góc với số đo lần lượt là: 300; 600; 900 => BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét \(\Delta\)BDE và \(\Delta\)CEF: ^BDE=^CEF=900; BD=CE; ^DBE=^ECF=600

=> \(\Delta\)BDE=\(\Delta\)CEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD

Xét \(\Delta\)BDE và \(\Delta\)AFD: BE=AD; ^DBE=^FAD=600; BD=AF => \(\Delta\)BDE=\(\Delta\)AFD (c.g.c)

=> ^BDE=^AFD=900 =>DF\(\perp\)AC (đpcm).

b) Ta có: \(\Delta\)BDE=\(\Delta\)CEF=\(\Delta\)AFD (cmt) => DE=EF=FD (các cạnh tương ứng)

=> \(\Delta\)DEF đều (đpcm).

c) \(\Delta\)DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200 (Kề bù)

=> \(\Delta\)PDM=\(\Delta\)MFN=\(\Delta\)NEP (c.g.c) => PM=MN=NP => \(\Delta\)MNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của \(\Delta\)ABC, chúng cắt nhau tại O.

=> O là trọng tâm \(\Delta\)ABC (1)

Do \(\Delta\)ABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC

Xét 3 tam giác: \(\Delta\)OAF; \(\Delta\)OBD và \(\Delta\)OCE:

AF=BD=CE

^OAF=^OBD=^OCE      => \(\Delta\)OAF=\(\Delta\)OBD=\(\Delta\)OCE (c.g.c)

OA=OB=OC

=> OF=OD=OE => O là giao 3 đường trung trực \(\Delta\)DEF hay O là trọng tâm \(\Delta\)DEF (2)

(Do tam giác DEF đều)

Dễ dàng c/m ^OFD=^OEF=^ODE=300 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: \(\Delta\)ODP; \(\Delta\)OEN; \(\Delta\)OFM:

OD=OE=OF

^ODP=^OEN=^OFM          => \(\Delta\)ODP=\(\Delta\)OEN=\(\Delta\)OFM (c.g.c)

OD=OE=OF (Tự c/m)

=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của \(\Delta\)MNP

hay O là trọng tâm \(\Delta\)MNP (3)

Từ (1); (2) và (3) => \(\Delta\)ABC; \(\Delta\)DEF và \(\Delta\)MNP có chung trọng tâm (đpcm).

27 tháng 1 2018

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC

=> ΔBDE có các góc với số đo lần lượt là: 300 ; 600 ; 900  

=> BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE

=> AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét ΔBDE và ΔCEF: ^BDE=^CEF=900 ; BD=CE; ^DBE=^ECF=600 => ΔBDE=ΔCEF (g.c.g)

=> BE=CF

=> BC-BE=AC-CF => CE=AF=BD Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600 ; BD=AF => ΔBDE=ΔAFD (c.g.c) => ^BDE=^AFD=900  =>DF⊥AC (đpcm).

b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt)

=> DE=EF=FD (các cạnh tương ứng)

=> Δ DEF đều (đpcm).

c) Δ DEF đều (cmt)

=> DE=EF=FD. Mà DF=FM=EN=DP

=> DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600

=> ^PDM=^MFN=^NEP=1200  (Kề bù)

=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O

=> O là trọng tâm ΔABC                                                                           (1)

Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác

=> ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác

=> OA=OB=OC

Xét 3 tam giác:

 ΔOAF; ΔOBD và ΔOCE: AF=BD=CE ^OAF=^OBD=^OCE     

=> ΔOAF=ΔOBD=ΔOCE (c.g.c) OA=OB=OC => OF=OD=OE

=> O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF                   (2)

(Do tam giác DEF đều) Dễ dàng c/m ^OFD=^OEF=^ODE=300

 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM: OD=OE=OF ^ODP=^OEN=^OFM         

=> ΔODP=ΔOEN=ΔOFM (c.g.c) OD=OE=OF (Tự c/m) => OP=ON=OM (Các cạnh tương ứng)

=> O là giao 3 đường trung trực của ΔMNP hay O là trọng tâm ΔMNP             (3)

Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a: Xét ΔMHB vuông tại H và ΔNKC vuông tại K có

BM=CN

\(\widehat{B}=\widehat{C}\)

Do đó: ΔMHB=ΔNKC

b: Ta có: ΔMHB=ΔNKC

nên HB=KC

Ta có: AH+HB=AB

AK+KC=AC

mà BA=AC

và HB=KC

nên AH=AK

c: Xét ΔAHM vuông tại H và ΔAKN vuông tại K có

AH=AK

HM=KN

Do đó: ΔAHM=ΔAKN

Suy ra: AM=AN

Đề sai rồi bạn

7 tháng 3 2020

Em tham khảo:

3 tháng 1 2022

lỗi