Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC đều => Kẻ AH vuông góc với BC thì H là trung điểm của BC => BH = BC/2 = a/2
Tính được AH theo định lý Pytago: AH = a3√2
=> Diện tích của tam giác ABC là: 12.a3√2.a=a23√4
b) Xét các cặp tam giác bằng nhau dựa trên tam giác ABC đều vào tỉ số đề bài cho (CGC) em sẽ => Tam giác DEF có 3 cạnh bằng nhau => tam giác đều
c) Tam giác DEF và tam giác ABC đồng dạng
=> SDEF/SABC = (DE/AB)2
1) Ta có: \(\frac{CE}{EA}=\frac{2}{5}\Rightarrow\frac{EA}{CE}=\frac{5}{2}\Rightarrow\frac{EA}{CE+EA}=\frac{5}{2+5}\Rightarrow\frac{EA}{AC}=\frac{5}{7}\); \(\frac{AF}{FB}=\frac{2}{5}\Rightarrow\frac{AF}{AF+FB}=\frac{2}{2+5}\Rightarrow\frac{AF}{AB}=\frac{2}{7}\)
\(\Rightarrow\frac{S_{AEF}}{S_{AFC}}=\frac{AE}{AC}=\frac{5}{7}\Rightarrow S_{AEF}=\frac{5}{7}S_{AFC}\)và \(\frac{S_{AFC}}{S_{ABC}}=\frac{AF}{AB}=\frac{2}{7}\Rightarrow S_{AFC}=\frac{2}{7}S_{ABC}\)
\(\Rightarrow S_{AEF}=\frac{5}{7}.\frac{2}{7}S_{ABC}=\frac{10}{49}S_{ABC}\)
Tương tự, ta có: \(S_{DEC}=\frac{10}{49}S_{ABC}\); \(S_{DFB}=\frac{10}{49}S_{ABC}\)
\(\Rightarrow S_{DEF}=S_{ABC}-S_{AEF}-S_{DEC}-S_{DFB}=S_{ABC}-\frac{30}{49}S_{ABC}=\frac{19}{49}S_{ABC}\)
2) Gọi N là trung điểm của DM
Kẻ \(EM//AB\left(M\in BC\right)\), gọi O là giao điểm của AM và EF, khi đó \(\frac{EM}{AB}=\frac{EC}{AC}=\frac{MC}{BC}\)(Thales)
Mặt khác từ giả thiết suy ra \(\frac{BD}{BC}=\frac{CE}{AC}=\frac{AF}{AB}\)
Từ đó ta có được BD = MC, EM = AF
EM = AF và EM // AF nên tứ giác AFME là hình bình hành => O là trung điểm của EF và AM
Ta có: \(\hept{\begin{cases}BD=MC\left(cmt\right)\\DN=MN\end{cases}}\Rightarrow BN=NC\)
Tam giác ADM có hai trung tuyến AN và DO cắt nhau tại G nên G là trọng tâm => G thuộc AN và \(AG=\frac{2}{3}AN\), G thuộc DO và \(DG=\frac{2}{3}DO\)
\(\Delta ABC\)có G thuộc trung tuyến AN và \(AG=\frac{2}{3}AN\)nên G là trọng tâm của tam giác (1)
\(\Delta DEF\)có G thuộc trung tuyến DO và \(DG=\frac{2}{3}DO\) nên G là trọng tâm của tam giác (2)
Từ (1) và (2) suy ra hai tam giác ABC, DEF có cùng trọng tâm G (đpcm)
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng