Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
xét tam giác ABK và tam giác DCK có:
KB=KB(gt)
KA=KD(gt)
BKA=DKC(2 góc đđ)
suy ra tam giác ABK=DCK(c.g.c)
suy ra BAK=DCK
suy ra AB//CD
b)
theo câu a, ta có tam giác ABK=DCK(c.g.c0
suy ra AB=DC
ta có: AB//DC mà BAK= 90 độ suy ra DCK=90
xét tam giác ABH và CDH có:
AB=CD(cmt)
HA=HC(gt)
BAH=DCH=90
suy ra tam giác ABH=CDH(c.g.c)
Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)
=> Tam giác CIE = Tam giác BID (c.g.c)
^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong
=> CE//BD hay BD//CH. Mà BD vuông góc với AB
=> CH vuông góc với AB (Quan hệ //, vg góc)
=> Tam giác AHC vuông tại H (đpcm).
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
Ta có: d là đường trung trực của tam giác ABC
m là đường trung trực BC
=> d cắt m tại giao điểm 3 đường trung trực tam giác ABC(hay còn gọi là tâm đường tròn ngoại tiếp tam giác)