Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BD=AB+AD=4+5=9\left(cm\right)\)
\(\Delta ABC\) và \(\Delta CBD\) có:
\(\frac{AB}{BC}=\frac{BC}{BD}\left(=\frac{2}{3}\right)\)
Góc B chung
\(\Rightarrow\Delta ABC\infty\Delta CBD\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{ACB}=\widehat{D}\\\frac{AB}{CB}=\frac{AC}{CD}\left(1\right)\end{cases}}\)
b, Từ (1) thay số vào: \(\frac{4}{6}=\frac{5}{CD}\Rightarrow CD=7,5\left(cm\right)\)
c, \(\widehat{BAC}=\widehat{D}+\widehat{ACD}=2\widehat{D}=2\widehat{ACB}\)
a) Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
\(\widehat{BAH}\) chung
Do đó: ΔAEC\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{AE}{AH}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AH\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AE}{AH}=\dfrac{AC}{AB}\)(cmt)
nên \(\dfrac{AE}{AC}=\dfrac{AH}{AB}\)
Xét ΔAEH và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AH}{AB}\)(cmt)
\(\widehat{EAH}\) chung
Do đó: ΔAEH\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{AEH}=\widehat{ACB}\)(hai góc tương ứng)