K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b,Gọi I là giao điểm của BC và ED

Xét ∆AED và ∆ABC có:

+AB=AD(gt)

+\(\widehat{BAC}=\widehat{DAB}\left(=90^o\right)\)

+AC=AE(gt)

\(\Rightarrow\)∆AED=∆ABC(ch-cgv)

\(\Rightarrow\widehat{EDA}=\widehat{ABC}\) (2 góc tương ứng)

Mà \(\widehat{DEA}+\widehat{EDA}=90^o\)( do ∆ADE vuông tại A)

\(\Rightarrow\widehat{CBA}+\widehat{DEA}=90^o\)

\(\Rightarrow\)∆BIE vuông tại I

\(\Rightarrow DE\perp BC\)

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông ) 

24 tháng 2 2020

a) Xét tgiac ABC và ADE có:

+ góc BAC = DAE = 90 độ (góc kề bù)

+ AB = AE 

+ AC = AE

=> Tgiac ABC = ADE (c-g-c)

=> DE = BC (2 cạnh t/ứng)

=> đpcm

b) Gọi O là giao điểm của DE và BC

Do tgiac ABC = ADE (cmt) nên góc AED (OEB) = góc ACB

=> góc OEB + góc B = góc B + ACB

Do tgiac ABC vuông tại A nên góc B + ACB = 90 độ (tổng 3 góc trong 1 tgiac là 180 độ)

=> góc OEB + B = 90 độ

Xét tgiac OBE có góc OEB + B = 90 độ => góc EOB = 90 độ

=> DE  vuông góc BC (đpcm)

c) 4. góc B = 5. góc C => góc B = 5/4. góc C

Mà tổng góc B + góc C = 90 độ

=> (tổng tỉ) => góc C = 40 độ

=> góc AED = 40 độ

18 tháng 1 2018

sao nhiều v bạn

1 tháng 12 2016

 

ABCDEN

\(a.\)

Xét \(\Delta ADE\)\(\Delta ABC\) có :

\(AD=AB\) \(\left(gt\right)\)

\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)

\(AE=AC\) \(\left(gt\right)\)

Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)

\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )

\(b.\)

Ta có :

\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )

\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )

\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)

Hay \(DE\perp BC\)

Vậy \(DE\perp BC\)

 

 

12 tháng 12 2016

còn phần c