Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAH vuông tại A và ΔBEH vuông tại E có
BH chung
góc ABH=góc EBH
=>ΔBAH=ΔBEH
=>BA=BE
=>ΔBAE cân tại B
b: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại H
=>H là trực tâm
=>HK vuông góc FC
c: Xét tứ giác QAKF có
M là trung điểm chung của QK và AF
=>QAKF là hình bình hành
=>QA//FK
=>Q,E,A thẳng hàng
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Xét \(\Delta AMB\) và \(\Delta AMC\).có:
AB = AC ( do tam giác ABC cân tại A )
MB = MC ( do M là trung điểm BC )
AM là cạnh chung
=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)
ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )
và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)
suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )
b) xét \(\Delta IAH \)và \(\Delta ICE\)có
IA = IC (gt)
IH =IE (gt)
góc HIA = góc EIC ( đối đỉnh )
do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)
suy ra AH = EC ( 2 cạnh tương ứng )
và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )
xét \(\Delta HAC\)và \(\Delta ECA\)có
AH = EC (cmt)
góc HAI = góc ECA (cmt)
AC là cạnh chung
do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)
suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)
mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)
hay \(CE⊥AE\)
a, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)
=> 53o + ACB = 90o
=> ACB = 37o
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: ABE = DBE (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-gn)
c, Xét △FBH và △CBH cùng vuông tại H
Có: BH là cạnh chung
FBH = CBH (gt)
=> △FBH = △CBH (cgv-gnk)
=> BF = BC (2 cạnh tương ứng)
d, Xét △ABC vuông tại A và △DBF vuông tại D
Có: AB = BD (△ABE = △DBE)
ABC là góc chung
=> △ABC = △DBF (cgv-gnk)
Ta có: AB + AF = BF và BD + DC = BC
Mà AB = BD (cmt) ; BF = BC (cmt)
=> AF = DC
Xét △AEF và △DEC
Có: AF = DC (cmt)
AE = DE (△ABE = △DBE)
=> △AEF = △DEC (cgv)
=> AEF = DEC (2 góc tương ứng)
Ta có: AED + DEC = 180o (2 góc kề bù)
=> AED + AEF = 180o
=> DEF = 180o
=> 3 điểm D, E, F thẳng hàng
a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :
- AB = AC ( \(\Delta\)ABC cân tại A )
- AM : cạnh chung
- BÂM = CÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )
b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :
- AM : cạnh chung
- Góc AHM = Góc AKM ( = 90° )
- HÂM = KÂM ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )
c ) Gọi O là giao điểm của AM và HK
Xét \(\Delta\)AOH và \(\Delta\)AOK có :
- AO : cạnh chung
- AH = AK ( cmt )
- HÂO = KÂO ( vì AM là phân giác của BÂC )
\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )
\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )
Mà AÔH + AÔK = 180° ( kề bù )
\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90°
Hay AM \(\perp\)HK
Xét \(\Delta AHB\) và \(\Delta CHB\) cùng vuông tại H, ta có:
BH là cạnh góc vuông của và
\(\widehat {ABH} = \widehat {CBH}\)( Do cùng bằng \({90^o} - \widehat {HAB} = {90^o} - \widehat {HCB}\) )
\( \Rightarrow \) \(\Delta AHB = \Delta CHB\)
\( \Rightarrow \) BA = BC