Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔMAD=ΔMCB
=>\(\widehat{MAD}=\widehat{MCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
c: Xét ΔNAK và ΔNBC có
NA=NB
\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)
NK=NC
Do đó; ΔNAK=ΔNBC
=>\(\widehat{NAK}=\widehat{NBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AK//BC
Ta có: AD//BC
AK//BC
AK,AD có điểm chung là A
Do đó: D,A,K thẳng hàng
Mình ghép câu b vào câu a luôn nhé bạn !!
a) Xét ΔAMB và ΔCMD có
AM=CM( do M là trung điểm của AC)
Góc AMB= góc CMD(đối đỉnh)
BM=DM
Suy ra : ΔAMB=ΔCMD(c.g.c)
\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^0\)
=> CD//AB
b ) Xét ΔANE và ΔBNC có
AN=NB( do N là trung điểm của AB)
Góc ANE= góc BNC( đối đỉnh)
NC=NE
=> ΔANE=ΔBNC(c-g-c)
=> AE=BC và góc AEN= góc BCN
=> EA//BC
Chứng minh tương tự ta có AD=BC và AD//BC
=> A;E;D thẳng hàng
Mà AE=AD
=> A là trung điểm của ED
a) xét tam giác AMD và tam giác CMB có :
AM = CM ( vì Mlaf trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)
MD = MB (gt)
=> tam giác AMD = tam giác CMB (c-g-c)
xét tam giác ANE và tam giác BNC có :
AN = BN ( vì N là trung điểm của AB)
\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)
NE = CN (gt)
=> tam giác ANE = tam giác BNC (c-g-c)
b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)
vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)
từ (1), (2) => AD = AE (đpcm)
c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)
mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong
do đó AD // BC (3)
Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)
mà \(\widehat{NAE}\)và \(\widehat{NBC}\) ở vị trí so le trong
do đó AE // BC (4)
từ (3), (4) => A, E, D thẳng hàng (đpcm)
Xét tam giác AEN và tam giác BNC ta có :
AN = BN
ANE = CNB ( đối đỉnh)
EN = NC
=> Tam giác AEN = tam giác BNC (c.g.c)
=> AE = BC (1)
Xét Tam giác AMD và tam giác CMB ta có :
AM = MC
CMB= AMD
MD = MB
=> tam giác AMD = tam giác CMB (c.g.c)
=> AD = BC (2)
Từ(1) và (2) ta có :
=> AE = AD ( cùng bằng BC)
=> A là trung điểm DE
CM:Xét t/giác BCN và t/giác AEN
có : BN = AN (gt)
\(\widehat{N_1}=\widehat{N_2}\)(đối đỉnh)
NC = NE (gt)
=> t/giác BCN = t/giác AEN (c.g.c)
=> BC = AE (2 cạnh t/ứng) (1)
Xét t/giác BCM và t/giác DAM
có : BM = MD (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
MC = AM (gt)
=> t/giác BCM = t/giác DAM (c.g.c)
=> BC = AD (2 cạnh t/ứng) (2)
Từ (1) và (2) => AE = AD
=> A là trung điểm của DE
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC
a:
Sửa đề; ΔAMB=ΔCMD
Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác AEBC có
N là trung điểm của AB
N là trung điểm của CE
Do đó: AEBC là hình bình hành
Suy ra: AE//BC và AE=BC
c: Xét tứ giác ABCD có
M la trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
Ta có: AE//BC
AD//BC
AD,AE có điểm chung là A
Do đó: D,A,E thẳng hàng
mà AE=AD
nên A là trung điểm của DE