Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác AMD và tam giác CMB có :
AM = CM ( vì Mlaf trung điểm của AC)
\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)
MD = MB (gt)
=> tam giác AMD = tam giác CMB (c-g-c)
xét tam giác ANE và tam giác BNC có :
AN = BN ( vì N là trung điểm của AB)
\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)
NE = CN (gt)
=> tam giác ANE = tam giác BNC (c-g-c)
b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)
vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)
từ (1), (2) => AD = AE (đpcm)
c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)
mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong
do đó AD // BC (3)
Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)
mà \(\widehat{NAE}\)và \(\widehat{NBC}\) ở vị trí so le trong
do đó AE // BC (4)
từ (3), (4) => A, E, D thẳng hàng (đpcm)
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)
a) xét tam giác MAD và tam giác MCB có:
MB=MD(gt)
MA=MC(gt)
AMD=BMC( 2 góc đđ)
suy ra tam giác MAD=MCB(c.g.c)
suy ra ADB=DBC suy ra AD//BC(1)
CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)
từ (1)(2) suy ra AD//BC và EA// BC
suy ra A,D,E thẳng hàng
Bài này bạn tự kẻ hình giúp mình nha!
1. Xét tam giác AMB và tam giác CMD có:
AM = CM ( M là trung điểm của AC )
AMB = CMD ( 2 góc đối đỉnh )
BM = DM (gt)
=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)
=> BAM = DCM ( 2 góc tương ứng)
=> DCM = 90o => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )
2.
Xét tam giác AMD và tam giác CMB có:
AM = CM ( Theo 1.)
AMD = CMB ( 2 góc đối đỉnh )
DM = BM (gt)
=> tam giác AMD = tam giác CMB ( c.g.c)
=> AD = BC (2 cạnh tương ứng) (dpcm)
=> ADM = CBM (2 góc tương ứng)
Mà góc ADM và và góc CBM ở vị trí so le trong
=> AD // BC (dpcm)
3. Xét tam giác AEN và tam giác BCN có:
AN=BN ( N là trung điểm của AB)
ANE = BNC ( 2 góc đối đỉnh )
NE = NC (gt)
=> Tam giác AEN = tam giác BCN ( c.g.c)
=> AE = BC ( 2 cạnh tương ứng ) (1)
=> EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC (2)
Theo 2. ta có : +) AD=BC (3)
+) AD // BC (4)
Từ (1) và (3) Suy ra AE = AD (5)
Từ (2) và (4) Suy ra A,E,D thẳng hàng (6)
Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)
Mình ghép câu b vào câu a luôn nhé bạn !!
a) Xét ΔAMB và ΔCMD có
AM=CM( do M là trung điểm của AC)
Góc AMB= góc CMD(đối đỉnh)
BM=DM
Suy ra : ΔAMB=ΔCMD(c.g.c)
\(\Rightarrow\widehat{BAM}=\widehat{DCM}=90^0\)
=> CD//AB
b ) Xét ΔANE và ΔBNC có
AN=NB( do N là trung điểm của AB)
Góc ANE= góc BNC( đối đỉnh)
NC=NE
=> ΔANE=ΔBNC(c-g-c)
=> AE=BC và góc AEN= góc BCN
=> EA//BC
Chứng minh tương tự ta có AD=BC và AD//BC
=> A;E;D thẳng hàng
Mà AE=AD
=> A là trung điểm của ED
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh
Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)
Vì N là trung điểm AB và CE nên ACBE là hbh
Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)
\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)