K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

các bạn giúp mk nha. mai mình phải nọp r

22 tháng 6 2021

Ta có bài toán sau: Xét tam giác ABC vuông tại A, tam giác MNP vuông tại M.

Nếu \(BC=NP\) hoặc \(BC\equiv NP\)thì \(AC>MP\Leftrightarrow\widehat{ABC}>\widehat{MNP}.\)

Chứng minh:

A B C M N P D O

Trên mặt phẳng chứa hai tam giác, lấy điểm D sao cho \(\Delta BDC=\Delta NMP\) (D,A khác phía so với BC)

Ta có \(\widehat{MNP}=\widehat{DBC},MP=DC\)

Xét tam giác ACD: \(AC>MP=CD\), suy ra \(\widehat{ADC}>\widehat{DAC}\)(1)

Gọi O là trung điểm BC, dễ thấy O cách đều A,B,C,D. Do đó:

\(\widehat{ADC}=\frac{1}{2}\widehat{AOC}=\widehat{ABC};\widehat{DAC}=\frac{1}{2}\widehat{DOC}=\widehat{DBC}=\widehat{MNP}\)(2)

Từ (1),(2) suy ra \(\widehat{ABC}>\widehat{MNP}\). Tương tự ta có thể chứng minh chiều ngược lại của bài toán.

Giải:

A B C M N D H K

Xét \(\Delta BMC\) và \(\Delta CNB\): Chung cạnh BC, BM = CN, \(\widehat{MBC}< \widehat{NCB}\); suy ra \(CM< BN\)

Dựng hình bình hành BMDN, ta có \(CM< BN=MD\)

Xét tam giác CMD: \(CM< MD\), suy ra \(\widehat{MDC}< \widehat{MCD}\)

Dễ thấy tam giác CND cân tại N, do vậy \(\widehat{MDC}-\widehat{NDC}< \widehat{MCD}-\widehat{NCD}\)

Hay \(\widehat{NDM}< \widehat{NCM}\). Gọi H và K là hình chiếu của N trên MD và MC.

Theo bài toán trên thì \(NH< NK\), từ đó \(\widehat{NMH}< \widehat{NMK}\)hay \(\widehat{BNM}< \widehat{CMN}\)(đpcm).

a: Xét ΔABM và ΔANM có

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

b: góc BAC+góc C=90 độ

góc CMN+góc C=90 độ

=>góc BAC=góc CMN

30 tháng 4 2017

A M B I N C O

a) Xét tam giác MOB và tam giác ION có:

MO = ON (gt)

BO = OI (gt)

góc MOB = góc ION (đối đỉnh)

=> tam giác MOB = tam giác ION (c.g.c)

=> góc MBO = góc OIN (cặp góc tương ứng)

Mà góc MBO = góc OIN (ở vị trí so le trong) => BM // NI

b) Vì tam giác MOB = tam giác ION (câu a)

=> MB = IN (cặp cạnh tương ứng)

Mà MB = NC (gt) 

=> IN = NC => Tam giác NIC cân 

c) xin lỗi bn nhé ! câu c mình nghĩ ko ra, bn nhờ bn khác giúp nha !

26 tháng 4 2020

a) Xét \(\Delta ABK\)và \(\Delta ACK\)có :

AB = AC(vì \(\Delta ABC\)cân tại A)

KB = KC(vì K là trung điểm của BC)

AK chung

=> \(\Delta ABK=\Delta ACK\left(c.c.c\right)\)

b) Vì \(\Delta ABK=\Delta ACK\left(c.c.c\right)\)=> \(\widehat{AKB}=\widehat{AKC}\)(hai góc tương ứng)

Ta có : \(\widehat{AKB}+\widehat{AKC}=180^0\)

=> \(\widehat{AKB}=\widehat{AKC}=90^0\)

hay \(AK\perp BC\)

c) Có j đó sai sai -.-

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA

 

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của \(\widehat{BAC}\)

b: Xét ΔCBD có CB=CD

nên ΔCBD cân tại C

Ta có: ΔCBD cân tại C

mà CN là đường phân giác

nên CN\(\perp\)BD

c: Ta có: \(\widehat{ADC}+\widehat{CDB}=180^0\)(hai góc kề bù)

\(\widehat{BCE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{CDB}=\widehat{ACB}\left(=\widehat{ABC}\right)\)

nên \(\widehat{ADC}=\widehat{BCE}\)

ΔCBD cân tại C

mà CN là đường cao

nên N là trung điểm của BD

=>BD=2BN

Xét ΔADC và ΔECB có

AD=EC

\(\widehat{ADC}=\widehat{ECB}\)

DC=CB

Do đó: ΔADC=ΔECB

=>EB=AC

=>EB-AC=AC-CE=AB-AD=BD=2BN