Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D M
a, xét tam giác CAB và tam giác DAB có : AC chung
AC = AD (gt)
^CAB = ^DAB =90
=> tam giác CAB = tam giác DAB (2cgv)
=> ^CBA = ^DBA (đn) mà BA nằm giữa BA và BD
=> BA là pg của ^CBD (đn)
b, ^CBA = ^DBA (câu a)
^CBA + ^CBM = 180 (kb)
^DBA + ^DBM = 180
=> ^CBM = ^DBM
tam giác CAB = tam giác DAB (câu a) => BC = BD (Đn)
xét tam giác CBM và tam giác DBM có : BM chung
=> tam giác CBM = tam giác DBM (c-g-c)
GT:cho tam giác vuông Abc ( a vuông)
Ac=Ad ; dac thẳng hàng;d khác c
KL: BA là tia phân giác của góc cbd
tam giác MBC=MBD
a, xet tam giác acb và tam giác adb có
ac=ad ( giả thuyết)
góc CAB=BAD ( đều = 90 độ )
AB cạnh cung
nên tam giác acb = tam giác adb (c-g-c)
mk am giác acb = tam giác adb
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà ba nằm giữa
=> ba là tia phân giác của góc cbd
b, xét tam giác MBCvàMBD có
mb cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
A B C D E
Giải :
a)xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-60^0-40^0=80^0\)
Do DE // BC => \(\widehat{B}+\widehat{BED}=180^0\)(trong cùng phía)
=> góc BED = 1800 - góc B = 1800 - 800 = 1000
Xét t/giác BCD có góc DBC + góc C + góc BDC = 1800 (tổng 3 góc của 1 t/giác)
=> góc DBC = 1800 - góc C - góc BDC = 1800 - 1200 - 400 = 200
Do DE // BC => góc CBD = góc BDE (so le trong)
Mà góc DBC = 200 => góc BDE = 200
b) Ta có: góc ABD + góc DBC = 800
=> góc ABD = 800 - góc DBC = 800 - 200 = 600 (1)
Do DF là tia p/giác của góc BDC nên:
góc BDF = góc FDC = góc BDC/2 = 1200/2 = 600 (2)
Mà góc ABD và góc BDF ở vị trí so le trong (3)
từ (1);(2);(3) => DF // AB
c) Xét t/giác EBD và t/giác FDB
có góc EBD = gióc BDF = 600 (cmt)
BD : chung
góc EDB = góc DBF = 200 (cmt)
=> t/giác EBD = t/giác FDB (g.c.g)
=> DF = BE (hai cạnh tương ứng)
Xét tam giác DAE và tam giác DHC có
góc DHC=góc DAE
DA=DH(vì tam giác ADB=BDH)
góc ADE=góc HDC(đối đỉnh)
Suy ra tam giác DAE=tam giác DHC
Suy ra AE=HC(2 cạnh tương ứng)(1)
Lai có BA=BH(vì tam giác ABD=tam giác BDH)(2)
Từ (1)(2) Suy raBE=BC(đpcm)