Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
A C B M I K
a) Ta có :
\(\hept{\begin{cases}AM=MB\\MI//BC\end{cases}}\Rightarrow IA=IC\left(1\right)\)
Do :
\(\hept{\begin{cases}IA=IC\left(cmt\right)\\IK//AB\end{cases}}\Rightarrow CK=BK\left(2\right)\)
Từ (1) và (2) => IK là đường trung bình của \(\Delta ABC\)
nên \(IK=\frac{1}{2}AB\Rightarrow IK=AM\left(dpcm\right)\)
b) Xét \(\Delta AMI\)và \(\Delta IKC\):
\(CI=CA\left(cmt\right)\)
\(IK=AM\left(cmt\right)\)
\(CK=IM\)( Do \(CK=BK\))
\(\Rightarrow\Delta AMI=\Delta IKC\left(c.c.c\right)\)
Vậy \(\Delta AMI=\Delta IKC\left(c.c.c\right)\)
c) Do \(\Delta AMI=\Delta IKC\left(c.c.c\right)\left(cmt\right)\)
\(\Rightarrow IA=IC\left(dpcm\right)\)
Bạn hỏi vì sao \(CK=IM\) nên Mk xin giải thích vì sao \(CK=IM\)
Cách 1:
Có:
- I là trung điểm của CA ( do IA=IC )
- M là trung điểm của AB (gt)
=> IM là đường trung bình của \(\Delta ABC\)
=> \(IM=\frac{1}{2}BC\Leftrightarrow IM=CK\left(=BK\right)\)
Cách 2 : Có \(IA=IC\left(cmt\right)\)
\(\widehat{CIK}=\widehat{IAM}\)
\(IK=AM\)
\(\Rightarrow\Delta AIM=\Delta ICK\left(c.g.c\right)\)
\(\Rightarrow CK=IM\)( 2 cạnh tương ứng )
~ học tốt ~
A B C E N I D M O 1 2 2 1 2 3 1 3 1
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
A B C I D E H
Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)
=> Tam giác CIE = Tam giác BID (c.g.c)
^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong
=> CE//BD hay BD//CH. Mà BD vuông góc với AB
=> CH vuông góc với AB (Quan hệ //, vg góc)
=> Tam giác AHC vuông tại H (đpcm).