K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

A B C D E

Giải :

a)xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=> \(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-60^0-40^0=80^0\)

Do DE // BC => \(\widehat{B}+\widehat{BED}=180^0\)(trong cùng phía)

=> góc BED = 1800 - góc B = 1800 - 800 = 1000

Xét t/giác BCD có góc DBC + góc C + góc BDC = 1800 (tổng 3 góc của 1 t/giác)

=> góc DBC = 1800 - góc C - góc BDC = 1800 - 1200 - 400 = 200

Do DE // BC => góc CBD = góc BDE (so le trong)

Mà góc DBC = 200 => góc BDE = 200

b) Ta có: góc ABD + góc DBC = 800

=> góc ABD = 800 - góc DBC = 800 - 200 = 600 (1)

Do DF là tia p/giác của góc BDC nên:

góc BDF = góc FDC = góc  BDC/2 = 1200/2 = 600 (2)

Mà góc ABD và góc BDF ở vị trí so le trong (3)

từ (1);(2);(3) => DF // AB

c) Xét t/giác EBD và t/giác FDB

có góc EBD = gióc BDF = 600 (cmt)

    BD : chung

góc EDB = góc DBF = 200 (cmt)

=> t/giác EBD = t/giác FDB (g.c.g)

=> DF = BE (hai cạnh tương ứng)

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

11 tháng 4 2018

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      \(AC^2+AB^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

\(\Rightarrow AC=12\left(cm\right)\)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\)  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

\(\Rightarrow\Delta BEH=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      AC2+AB2=BC2

⇒AC2=BC2−AB2=152−92=144

⇒AC=12(cm)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

⇒ΔABD=ΔEBD  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

⇒ΔBEH=ΔBAC  (Cạnh góc vuông và góc nhọn kề)

⇒BH=BC hay tam giác HBC cân tại B.

10 tháng 2 2019

Các bạn làm hộ mik câu c,d thôi nhé:3

28 tháng 12 2015

a) Xét tam giác ABD và tam giác HBD, ta có:

Góc B1 = Góc B2 (gt)

AB = HB (gt)

BD: cạnh chung

Do đó: tam giác ABD = tam giác HBD ( c.g.c )

=> Góc BDH = Góc BAD = 90 độ  ( cặp góc tương ứng )

=> DH vuông góc với BC (đpcm)

b) Từ câu a, tam giác ABD = tam giác HBD 

=> Góc ADB = Góc HDB ( cặp góc tương ứng )

=> Góc ADB = Góc HDB = Góc ADH/2 = 110/2 = 55 độ

Từ đó ta có: Góc ABD = Góc ABD = 90-55 = 35 độ

Vậy góc ABD = 35 độ

tick mik nha