Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác EBD có:
+ ^ABD = ^EBD (do BD là phân giác ^B).
+ BD chung.
+ AB = BE (gt).
=> Tam giác ABD = Tam giác EBD (c - g - c).
=> DA = DE (2 cạnh tương ứng).
b) Tam giác ABD = Tam giác EBD (cmt).
=> ^BAD = ^BED (2 góc tương ứng).
Mà ^BAD = 90o (gt).
=> ^BED = 90o.
a) xét ΔABD và ΔEBD có:
BA = BE (GT)
∠ABD=∠EBD( BD là tia phân giác ∠ABE)
BD chung⇒ΔABD=ΔEBD(ch-cgv)
⇒AD=ED (2 cạnh tương ứng)
b)Vì ΔABD=ΔEBD(CMT)
⇒∠BAD=∠BED(2 góc tương ứng)
Mà ∠BAD= 90 độ
⇒∠BED = 90 độ
a/ Xét tam giác ABD và tam giác EBD có:
- Cạnh BD chung
- Góc ABD = góc DBE (vì BD là tia phân giác của góc ABE)
- BA = BE (gt)
Do đó tam giác ABD = tam giác EBD (c.g.c)
Suy ra DA = DE (2 cạnh tương ứng)
b/ Từ tam giác ABD = tam giác EBD => Góc A = góc BED (2 góc tương ứng)
Mà góc A = 90o nên góc EBD = 90o
a) Xét ΔDAB và ΔDEB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔDAB=ΔDEB(c-g-c)
Suy ra: DA=DE(Hai cạnh tương ứng)
a) Xét tam giác ABD và tam giác BED có:
AB = BE (gt)
\(\widehat{ABD}=\widehat{DBE}\)(gt)
BD - chung
\(\Rightarrow\)tam giác ABD = tam giác BED (c - g - c)
\(\Rightarrow DA=DE\)(2 cạnh tương ứng)
b) Vì tam giác ABD = tam giác BED (chứng minh trên)
\(\Rightarrow\widehat{BAD}=\widehat{BED}\)(2 góc tương ứng)
\(\Rightarrow\widehat{BED}=90^0\)
c) Xét tam giác AFD và tam giác DEC có:
AD = DE (chứng minh trên)
\(\widehat{FAD}=\widehat{DEC}=90^0\)
\(\widehat{ADF}=\widehat{EDC}\)(2 góc đối đỉnh)
\(\Rightarrow\)tam giác AFD = tam giác DEC (g-c-g)
\(\Rightarrow\widehat{AFD}=\widehat{DEC}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AE // CF (ĐPCM)
ko bt thì vào thôi