K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại B và ΔAED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

Do đó: ΔABD=ΔAED(cạnh huyền-góc nhọn)

b) Ta có: AD là tia phân giác của \(\widehat{BAC}\)(gt)

nên \(\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)(1)

Ta có: ΔABC vuông tại B(gt)

nên \(\widehat{C}+\widehat{A}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{DCA}+60^0=90^0\)

hay \(\widehat{DCA}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DCA}\)

Xét ΔDCA có \(\widehat{DAC}=\widehat{DCA}\)(cmt)

nên ΔDCA cân tại D(Định lí đảo của tam giác cân)

Suy ra: DA=DC(hai cạnh bên)

Xét ΔAED vuông tại E và ΔCED vuông tại E có 

DA=DC(cmt)

DE chung

Do đó: ΔAED=ΔCED(cạnh huyền-cạnh góc vuông)

Suy ra: EA=EC(hai cạnh tương ứng)

21 tháng 4 2022

a, Áp dụng định lý Pytago :

ta có : \(BC^2=AC^2+AB^2\)

           \(BC^2=3^2+4^2\)

           \(BC^2=9+16=25=5^2\)

       =>\(BC=5^{ }\)

b, Áp dụng định lý trong một tam giác gốc đối diện với cạnh lớn hơn là góc lớn hơn

Có : Trong tam giác ABC có BC=5, AC=4, AB=3

=> góc A > góc B > góc C 

Vậy góc B > góc C

c, Xét △BIC và △AIC có

góc \(C_1=C_2\)

BAC = KHC = 90 độ

IC cạnh chung

=> △HIC = △AIC

Xét △HIB và △KIA có

IH = IA (cmt)

\(I_1=I_2\)( đối đỉnh)

Góc A = góc H = 90 độ

=> △HIB = △AIK

Vậy cạnh AK = BH

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4^2+3^2=25\)

=>BC=5(cm)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

c: Sửa đề: ΔBHC đều

Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEH vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBH}\) chung

Do đó: ΔBEH=ΔBAC

=>BH=BC

Xét ΔBHC có BH=BC và \(\widehat{HBC}=60^0\)

nên ΔBHC đều