Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{A}=180^0-50^0-30^0=100^0\)
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó:ΔBAD cân tại B
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
Xét ΔBAC và ΔBDC có
BA=BD
AC=DC
BC chung
Do đó:ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}\)
a)^A=1000 (quá đơn giản,bn tự lm)
b) Xét tam giác BAH=tam giác BDH (2cgv)
=>^BAH=^BDH (cặp góc t.ứ)
và tam giác CAH=tam giác CDH (2cgv)
=>^CAH=^CDH (cặp góc t.ứ)
Ta có:^BAC=^BAH+^CAH
^BDC=^BDH+^CDH
mà ^BAH=^BDH(cmt);^CAH=^CDH(cmt)
=>^BAC=^BDC
c)Vì ^ACB<^ABC (300<500)
=>AB<AC
mà HB là hình chiếu của đg xiên AB
HC là hình chiếu của đg xiên AC
=>HB<HC
a: \(\widehat{C}=90^0-60^0=30^0\)
Xét ΔABC có \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó: ΔAHC=ΔDHC
c: Xét ΔBAC và ΔBDC có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: \(\widehat{C}=90^0-60^0=30^0\)
Xét ΔABC có \(\widehat{C}< \widehat{B}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
HC chung
HA=HD
Do đó: ΔAHC=ΔDHC
c: Xét ΔBAC và ΔBDC có
CA=CD
\(\widehat{ACB}=\widehat{DCB}\)
CB chung
Do đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)
a: góc B=90-30=60 độ
góc B>góc C
=>AC>AB
góc CAH=90-30=60 độ>góc C
=>CH>AH
b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD
=>ΔCAH=ΔCDH
c: Xét ΔACB và ΔDCB có
CA=CD
góc ACB=góc DCB
CB chung
=>ΔACB=ΔDCB
=>góc CDB=góc CAB=90 độ
Câu hỏi của nguyen anh ngoc ly - Toán lớp 7 - Học toán với OnlineMath
Đề chưa rõ . ABC có A = 50 độ Nhưng sao lại tính góc A ?
hơi vô lí 1 chút coi lại đề nhé pạn ơi