K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

M A C B N K I 1 2 1 2 3 4 1 2 60 0

Xét \(\Delta ABC\)có:

\(\widehat{ABC}+\widehat{BCA}=180^0-60^0=120^0\)

mÀ \(\widehat{B_1}=\widehat{B_2}\)(TIA pg)

\(\widehat{C_1}=\widehat{C_2}\left(pg\right)\)

\(\Rightarrow\widehat{B_2}+\widehat{C_2}=\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=60^0\)

\(\Rightarrow\widehat{BIC}=120^0\)

Kẻ IK là pg \(\widehat{BIC}\)

\(\Rightarrow\widehat{I_2}=\widehat{I_3}\left(=60^0\right)\)

T a có: \(\widehat{I_4}=\widehat{I_1}=180^0-\widehat{BIC}=60^0\)

\(\Rightarrow\widehat{I_1}=\widehat{I_2}=\widehat{I_3}=\widehat{I_4}\left(=60^0\right)\)

Xét tam giác BNI=tam giác BKI(g.c.g) có:

BN=BK(2 cạnh t/ư)

Tương tự ta c/m đc  tam giác IKC= tam giác IMC(g.c.g)

=>CK=CM(2 cạnh t/ư)

Lại có: BK+KC=BC

mÀ BN=BK;CK=CM

=>BN+MC=BC(đpcm)

25 tháng 12 2016

Gọi H là giao điểm của NC và BM

Vẽ HK là phân giác BHC => BHK = CHK = BHC/2

Có: A + ABC + ACB = 180o

=> 60o + ABC + ACB = 180o

=> ABC + ACB = 180o - 60o = 120o

=> ABC/2 + ACB/2 = 60o

Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2

Nên HBK + HCK = 60o

=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o

=> BHK = KHC = BHC/2 = 60o

Có: BHN + BHC = 180o ( kề bù)

=> BHN + 120o = 180o

=> BHN = 180o - 120o = 60o

Xét t/g BHK và t/g BHN có:

BHK = BHN = 60o (cmt)

BH là cạnh chung

NBH = KBH (gt)

Do đó, t/g BHK = t/g BHN (g.c.g)

=> BK = BN (2 cạnh tương ứng) (1)

Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)

=> KC = MC (2 cạnh tương ứng) (2)

Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)

 

 

 

11 tháng 12 2016

-Gọi I là giao điểm của BM và CN.

-Kẻ tia ID là tia phân giác của góc BIC.

 

7 tháng 3 2020

A N M B D C 1 4 3 2 2 1 2 1 60 o

Tia phân giác của \(\widehat{BIC}\)cắt BC ở D.\(\Delta ABC\)có \(\widehat{A}=60^0\)

=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí tổng ba góc trong một tam giác)

=> \(60^0+\widehat{B}+\widehat{C}=180^0\)

=> \(\widehat{B}+\widehat{C}=120^0\)

\(\widehat{B}_1+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)

=> \(\widehat{I}_1=\widehat{I}_2=60^0\)

\(\Delta BIC\)có : \(\widehat{B_1}+\widehat{C_1}=60^0\)

=> \(\widehat{BIC}=180^0-60^0=120^0\)

Do đó \(\widehat{I_3}=\widehat{I_4}=60^0\)

Xét \(\Delta BIN\)và \(\Delta BID\)có :

\(\widehat{B_2}=\widehat{B_1}\)

BI cạnh chung

\(\widehat{I_2}=\widehat{I_3}=60^0\)(cmt)

=> \(\Delta BIN=\Delta BID\left(g-c-g\right)\)

=> BN = BD(hai cạnh tương ứng)        (1)

Xét \(\Delta CIM\)và \(\Delta CID\)có :

\(\widehat{C_1}=\widehat{C}_2\)

CI cạnh chung

\(\widehat{I}_1=\widehat{I_4}=60^0\)

=> \(\Delta\)CIM = \(\Delta\)CID(c-g-c)

=> CM = CD(hai cạnh tương ứng)  (2)

Từ (1) và (2) ta có : BN = BD

                                CM = CD

=> BM + CM = BD + CD = BC

Vậy BN + CM = BC