K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔDBH vuông tại B có 

HB chung

AH=DB(gt)

Do đó: ΔAHB=ΔDBH(hai cạnh góc vuông)

b) Ta có: ΔAHB=ΔDBH(cmt)

nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)

mà \(\widehat{ABH}\) và \(\widehat{DHB}\) là hai góc ở vị trí so le trong

nên AB//HD(Dấu hiệu nhận biết hai đường thẳng song song)

c) Ta có: ΔAHB vuông tại H(AH\(\perp\)BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}=90^0-35^0=55^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}=90^0-55^0\)

hay \(\widehat{ABC}=35^0\)

Vậy: \(\widehat{ABC}=35^0\)

a) Xét tam giác AHB và tam giác DBH có:

AH=BD (giả thiết)

Góc AHB=góc DBH (=90o)

BH là cạnh chung

=> Tam giác AHB = tam giác DBH (c.g.c)

b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)

Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH

c) Tam giác ABH có: BAH^+AHB^+ABH^=180o (tổng 3 góc trong tam giác)

=>35o+90o+ABH^=180o⇒ABH^=180o−35o−90o=55o

Tam giác ABC có: BAC^+ACB^+ABC^=180o(tổng 3 góc trong tam giác)

=>