Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạngvới ΔHBA
b: AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm
a) Xét ΔHBA và ΔABC có
\(\widehat{B }\) chung
\(\widehat{BHA}=\widehat{BAC}\)=90o
=> ΔHBA ∼ ΔABC (gg)
b) xét ΔABC có \(\widehat{BAC} \)=90o
=> AC2+AB2=BC2 (đl pitago)
=>162+122=BC2
=> BC=20 cm
Ta có SΔABC=\(\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\)
=> AB.AC=AH.BC
=>12.16=AH.20
=> AH=9.6
Xét ΔABH có \(\widehat{BHA}\)=90o
=> HA2+HB2=AB2 (đl pitago)
=>9.62 + HB2=122
=> HB=7.2 cm
c) Xét ΔABC có
AD là phân giác (D∈BC)
=> \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)(tc đường pg trong Δ)
=>\(\dfrac{BD}{BC-BD}=\dfrac{3}{4}\)=>\(\dfrac{BD}{20-BD}=\dfrac{3}{4}\)
=> BD=\(\dfrac{60}{7}\) cm
=> CD=20 - \(\dfrac{60}{7}\)=\(\dfrac{80}{7}\) cm
d) Xét ΔAHC có
KN // HC (MN//BC , K ∈ MN , H∈ BC,(K∈AH ,N∈AC))
=> \(\dfrac{AN}{AC}=\dfrac{AK}{AH}=\dfrac{KN}{HC}\)( hệ quả đl ta-lét)
=>\(\dfrac{AN}{AC}=\dfrac{3.6}{9.6}=\dfrac{KN}{HC}\)
Xét ΔABC có
MN// BC (M∈AB ,N∈AC)
=> \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\)=>\(\dfrac{3.6}{9.6}=\dfrac{MN}{20}\) => MN =7.5 cm
KH=AH-KH =9.6-3.6=6 cm
Xét tg MNCB có MN//BC
=> tg MNCB là hình bình hành (dhnb)
có AH⊥BC => KH⊥BC (K∈AH)
=> SBMNC = \(\dfrac{KH.\left(MN+BC\right)}{2}\)=\(\dfrac{6.\left(7.5+20\right)}{2}\)=82.5cm2
a)Xét ΔHAB và ΔABC {AHBˆ=ABCˆCABˆ:chung ⇒ΔAHB∼ΔABC(g−g) b)Xét ΔABC ta có: BC2=AC2+AB2 BC2=162+122 BC2=400 BC=400−−−√=20cm Ta có ΔHAB~ΔABC(câu a) ⇒AHAC=ABBC⇔AH16=1220 ⇒AH=12.1620=9,6cm Xét ΔHBA ta được: AH2+BH2=AB2 BH2=AB2−AH2 BH2=122−9,62 BH2=51,84 ⇒BH=51,84−−−−−√=7,2cm c)Vì AD là đường phân giác của ΔABC nên: ABBD=ACCD⇔ABBC−CD=ACCD ⇔AB.CDCD.(BC−CD)=AC.(BC−CD)CD.(BC−CD) ⇔AB.CD=AC.(BC−CD) ⇔12.CD=16.20−16.CD ⇔12.CD+16.CD=320 ⇔28.CD=320 ⇔CD=32028≈11.43(cm) Độ dài cạnh BC là: BD=BC-CD BD=20−32028≈8,57(cm)
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=25cm
AH=15*20/25=12cm
HB=20^2/25=16cm
HC=25-16=9cm
mình chỉ nói ý thôi nhé
a) goc AHB = goc CAB cung = 90 do)
b la goc chung
b) tính AB dung py-ta-go
tính AH bang cach thay so vào các tỉ số dong dang của 2 tam giac tren
tính BH tương tự như tính AH
c) biến đổi
HC.AI=AC.HO
<=> HC/HO=AC/AI
xét 2 tam giac HCO va tam giac ACI