Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(bạn tự vẽ hình nhé)
Trên tia đối của tia AC lấy điểm D sao cho AD=AB
Suy ra: \(\Delta DAB\) cân tại A => \(\widehat{D}=\widehat{ABD}\Rightarrow\widehat{BAC}=\widehat{D}+\widehat{ABD}=2\widehat{ABD}\) (góc ngoài của tam giác)
Mặt khác: \(\widehat{BAC}=2\widehat{ABC}\) (gt)
\(\Rightarrow\widehat{BAC}=\widehat{DBC}\)
Xét hai tam giác BAC và DBC có:
\(\widehat{C}\) : chung
\(\widehat{BAC}=\widehat{DBC}\) (cmt)
\(\Rightarrow\Delta BAC\) đồng dạng với \(\Delta DBC\) (g-g)
\(\Rightarrow\frac{BC}{DC}=\frac{AC}{BC}\Rightarrow BC^2=DC.AC\)
\(\Rightarrow a^2=b\left(b+c\right)\Rightarrow a^2=b^2+bc\)
=> đpcm
Gọi AD là phân giác góc A.
\(\Delta CAD\sim \Delta CBA\)
\(\Rightarrow\frac{b}{a}=\frac{AD}{c}=\frac{CD}{b}\)
\(=> b^2=a.CD\) ; \(bc=a.AD=a.BD\)
\(=> b^2+bc=a^2\)
1) a) vì tam giác ABC cân tại a --> góc B = Góc C = (180 - 50 ) :2 = 65 độ b) vì AD=AE --> tam giác ADE cân tại A. mà gốc A= 50 độ --> góc D = góc E= 65 độ . --> góc D= Góc B ( vì cùng bằng 65 độ ) mà 2 góc này là 2 góc đồng vị của 2 đường thẳng DE và BC nên DE // BC 2) a ) vì tam giác ABC cân --> AB=AC (1 mà AD=AE ( gt) (2) và BD = AB - AD (3) , EC= AC - AE (4) Từ (1) (2) (3) (4) --> BD= EC b) ta có góc ABC = AC (vì tam giác ABC cân tại A ) hay góc DBC = góc ECB xét tam giác DBC và tan giác ECB có : +) DBC=ECB ( cmt) +) DB=EC ( CM phần a ) + ) cạnh BC chung nên tam giác DBC = tam giac ECB ( cgc)--> EBC= DCB ( 2 góc tương ứng ) hay OBC = OCB --> tam giác OBC cân tại O chứng minh DE// BC như bài 1 --> ODE = OED --> tam giác ODE cân tại O ( Bài 2 này em cứ làm phần c trước nhé em để nó ngắn em à ) 3)a) Ta có tam giác ABC vuông tại A --> góc ABC+ góc ACB = 90 độ mà ABC = 60 đôh ( gt) --> ACB = 30 độ ta lại có Cx vuông góc với BC tại c --> BCx = ACB + ACx = 90 độ makf ACB = 30 độ --> ACx = 60 độ (1) và AC = AE (gt) (2) từ (1) và (2) --> tam giavc ACE là tam giác đều b) ta có ABF = 120 độ ( Vì là góc kề bù của góc ABC =60 độ ) tam giác ABF có AB=BF (gt) --> tam giác ABF cân tại B --> BÀ =BFA= 9 180 - 120 ) : 2 = 30 độ vì tam giác ACE là tam giác đều -- EAC = 60 độ ta có EAF = EAC + CAF + BAF = 60 + 90 + 30 = 180 độ --> 3 điểm E , A F thẳng hàng
a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
AK : cạn chung
AB = AC ( gt)
BK = KC ( K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BC\)
b ) Vì :
\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)
\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{BCE}=90^o\)
Vậy \(\widehat{BCE}=90^o\)
#)Giải :
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15\\\frac{\widehat{B}}{4}=15\\\frac{\widehat{C}}{5}=15\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}}\)
Vậy \(\widehat{A}=45^o;\widehat{B}=60^o;\widehat{C}=75^o\)
Bài 2 :
Áp dụng tính chất tỉ lệ thức :
\(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3};3\widehat{B}=4\widehat{C}\Rightarrow\frac{\widehat{B}}{3}=\widehat{\frac{C}{4}}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau rồi làm thôi, ez nhỉ ^^