Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đối với điểm A nằm ngoài đường tròn (O;R), kí hiệu dA là đường thẳng nối 2 tiếp điểm của 2 tiếp tuyến kẻ từ A tới (O).
Đối với điểm A nằm bên trong đường tròn, kí hiệu dA để chỉ đường thẳng vuông góc với OA tại T với T là điểm mà \(OA.OT=R^2\) và A nằm giữa O và T.
Để giải được bài toán này, ta cần xét tính chất sau của đường dA:
TC1: \(A\in d_B\Leftrightarrow B\in d_A\), tính chất này là hiển nhiên theo định nghĩa đường dA.
TC2: A, B, C thẳng hàng khi và chỉ khi dA, dB, dC đồng quy hoặc đôi một song song.
CM: Nếu \(O\in AB\) thì hiển nhiên TC2 đúng.
Nếu \(O\notin AB\) thì gọi P là giao điểm của dA, dB. Vì \(P\in d_A,P\in d_B\) nên theo TC1, \(A\in d_P,B\in d_P\) nên \(AB\equiv d_P\). Do đó A, B, C thẳng hàng khi và chỉ khi \(C\in d_P\), có nghĩa là \(P\in d_C\) hay dA, dB, dC đồng quy tại P, TC2 được chứng minh.
Bây giờ ta sẽ xét bổ đề sau:
Bổ đề: Cho tam giác ABC, I là tâm đường tròn nội tiếp. K là trực tâm của tam giác IBC. M, N lần lượt là trung điểm của AB, AC. Khi đó \(MN\equiv d_K\) (đối với đường tròn I)
CM: Gọi D, E lần lượt là tiếp điểm của (I) với BC, CA. DE cắt BI, CI, KC lần lượt tại L, J, T. Theo tính chất quen thuộc thì \(\widehat{BLA}=90^o\), suy ra \(ML=MA=MB\). Từ đó \(\widehat{MLB}=\widehat{MBL}=\widehat{LBC}\), suy ra ML//BC hay \(L\in MN\).
Mặt khác, vì \(\widehat{LTC}=\widehat{LJC}=90^o\) nên tứ giác CJLT nội tiếp \(\Rightarrow IL.IT=IJ.IC=r^2\) (\(r\) là bán kính đường tròn (I)), theo định nghĩa đường \(d_X\) , suy ra được \(KC\equiv d_L\). Từ đó suy ra \(K\in d_L\). Theo TC1 suy ra \(L\in d_K\). Mà \(L\in MN,MN\perp IK\) nên theo định nghĩa đường \(d_X\), suy ra \(MN\equiv d_K\). Vậy bổ đề được chứng minh.
Bây giờ ta sẽ quay lại bài toán chính:
Từ kết quả của bổ đề, ta suy ra \(MN\equiv d_K,MP\equiv d_H\)
Mặt khác, theo định nghĩa, ta có \(DM\equiv d_D\).
Để ý rằng MN, MP, MD đồng quy tại M nên theo TC2, suy ra H, K, I thẳng hàng. Suy ra đpcm.
Ở chỗ cuối phải là \(MN\equiv d_H,MP\equiv d_K\) chứ không phải ngược lại đâu. (bổ sung thêm M, N, P lần lượt là trung điểm của BC, CA, AB)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)
Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)
(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)
b) Xét ΔAMN và ΔABC có:
\(\widehat{BAC}\)chung
\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)
Do đó ΔAMN ~ ΔABC
Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)
hay AM.AC=AN.AB
Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)
Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)
Suy ra tứ giác ANHM nội tiếp
Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)
Mà \(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)
\(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)
Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)
Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)
c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)
Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)
Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)
Do đó tứ giác HMCD nội tiếp
Suy ra \(\widehat{HMD}=\widehat{HCD}\)
Mà \(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)
Nên \(\widehat{HMD}=\widehat{HMN}\)
Vậy MH là phân giác \(\widehat{NMD}\)
Mà MH vuông góc AM (gt)
Nên AM là phân giác ngoài
Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)
hay IH.AD=AH.ID
a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)
→AFAD=AHAB→AF.AB=AH.AD
Tương tự AH.AD=AE.AC→AF.AB=AE.AC
b.Ta có :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o
→AEHF,AEDB,FHDB nội tiếp
→ˆHFE=ˆFAE=ˆHBD=ˆHFD
→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF
→HIHD=FIFD=AIAD
→IH.AD=AI.DH
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC