K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Vì \(BE//AD\) nên \(\widehat {EBA} = \widehat {BAD}\) (cặp góc so le trong)  (1)

Vì \(BE//AD\) nên \(\widehat {BEA} = \widehat {DAC}\) (cặp góc đồng vị)   (2)

Vì \(AD\) là tia phân giác nên \(\widehat {BAD} = \widehat {DAC}\) (tính chất)  (3)

Từ (1); (2); (3) suy ra \(\widehat {EBA} = \widehat {AEB}\) (tính chất bắc cầu)

Xét tam giác \(BAE\) có:

\(\widehat {EBA} = \widehat {AEB}\) (chứng minh trên)

Nên tam giác \(BAE\) cân tại \(A\).

b) Vì \(BE//AD\) nên \(\frac{{BD}}{{DC}} = \frac{{AE}}{{AC}}\).

Mà tam giác \(BAE\) cân tại \(A\) nên \(AE = AB \Rightarrow \frac{{AE}}{{AC}} = \frac{{AB}}{{AC}}\) (định lí Thales)

Do đó, \(\frac{{DB}}{{DC}} = \frac{{AE}}{{AC}} = \frac{{AB}}{{AC}}\) (điều phải chứng minh).

a: AD//BE

=>góc CAD=góc CEB và góc BAD=góc ABE

mà góc CAD=góc BAD

nên góc CEB=góc ABE

=>ΔBAE cân tại A

b: ΔBAE cân tại A

=>AB=AE

=>AB/AC=AE/AC

mà AE/AC=BD/DC(ΔCEB có AD//BE)

nên AB/AC=AE/AC=DB/DC