K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DE//AC
Do đó; E là trung điểm của AB

Xét ΔBAC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của AC

Xét tứ giác ADBM có

E là trung điểm chung của AB và DM

=>ADBM là hình bình hành

c: Xét tứ giác ADCN có

F là trung điểm chung của AC và DN

=>ADCN là hình bình hành

=>AN//CD và AN=CD

Ta có: ADBM là hình bình hành

=>AM//BD và AM=BD

Ta có: AN//CD

AM//BD

mà B,D,C thẳng hàng

nên AN//BC và AM//BC

mà AN,AM có điểm chung là A

nên N,A,M thẳng hàng

Ta có: AM=BD

AN=CD

mà BD=DC

nên AM=AN

mà M,A,N thẳng hàng

nên A là trung điểm của MN

17 tháng 12 2023

cảm ơn bạn

3 tháng 6 2017

Giải bài 84 trang 109 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Tứ giác AEDF là hình bình hành.

Vì có DE // AF, DF // AE (gt) (theo định nghĩa)

b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.

c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).

d) Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).

26 tháng 12 2021

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là tia phân giác

nên AEDF là hình thoi

16 tháng 2 2022

-Ta có: DE//AB, DF//AC (gt).

\(\Rightarrow\) AEDF là hình bình hành mà AD là tia phân giác của \(\widehat{BAC}\) (gt).

\(\Rightarrow\) AEDF là hình thoi.

-Xét △ABC có: DF//AC (gt).

\(\Rightarrow\dfrac{BF}{AB}=\dfrac{DF}{AC}\) (định lí Ta-let).

\(\Rightarrow1-\dfrac{DF}{AB}=\dfrac{DF}{AC}\)

\(\Rightarrow\dfrac{DF}{AB}+\dfrac{DF}{AC}=1\)

\(\Rightarrow DF.\left(\dfrac{1}{AB}+\dfrac{1}{AC}\right)=1\)

\(\Rightarrow DF.\left(\dfrac{1}{3}+\dfrac{1}{6}\right)=1\)

\(\Rightarrow DF.\dfrac{1}{2}=1\)

\(\Rightarrow DF=2\) (cm).

\(\Rightarrow P_{AEDF}=4.DF=4.2=8\left(cm\right)\) (do AEDF là hình thoi).

22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

b: Để AEDF là hình thang vuông thì góc A=90 độ

15 tháng 12 2023

loading...  loading...  loading...  loading...  

20 tháng 12 2022

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành