Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC can tại A
mà AD là trung tuyến
nên AD là phân giác
b: Xet ΔABE và ΔACF có
AB=AC
góc BAE chung
AE=AF
=>ΔABE=ΔACF
=>góc ABE=góc ACF=1/2*góc ABC
=>BE là phân giác của góc ABC
c: Xet ΔABC có
BE,CF,AD là phân giác
=>BE,CF,AD đồng quy
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a)Áp dụng định lí pytago vào tam giác ABC vuông tại A, ta có
BC^2=AB^2+AC^2
=>BC^2=4^2+3^2
=>BC^2=16+9=25
=>BC=căn25=5 (cm)
vậy,BC=5cm
b)Xét tam giác ABC và AED có
AB=AE(gt)
 là góc chung
AC=AD(gt)
=>tam giác ABC=tam giác AED(c-g-c)
Xét tam giác AEB có:Â=90*;AE=AB
=>tam giác AEB vuông cân tại A
Vậy tam giác AEB vuông cân
c)Ta có EÂM+BÂM=90*
mà BÂM+MÂB=90*
=>EÂM=MÂB
mà MÂB=AÊD(cm câu b)
=>EÂM=AÊD hay EÂM=AÊM
xét tam giác EAM có: EÂM=AÊM(cmt)
=>tam giác EAM cân tại M
=>ME=MA (1)
Ta có góc ACM+CÂM=90*
mà BÂM+CÂM=90*
=>góc ACM=BÂM
mà góc ACM=góc ADM( cm câu b)
=>góc ADM=DÂM
Xét tam giác MAD có góc ADM=DÂM(cmt)
=>tam giác ADM cân tại M
=>MA=MD (2)
Từ (1) và (2) suy ra MA=ME=MD
ta có định lí:trong 1 tam gáic vuông, đg trung truyến ứng với cạnh huyền bằng nửa cạnh huyền
=>MA=1/2ED
=>MA là đg trung tuyến ứng với cạnh ED
Vậy MA là đg trung tuyến của tam giác ADE
Tham khảo tại link này nhé !
https://olm.vn/hoi-dap/detail/219404925266.html
a)Xét\(\Delta ABE\)và\(\Delta DBE\)có:
\(AB=DB\left(GT\right)\)
\(\widehat{BAE}=\widehat{BDE}\left(=90^o\right)\)
\(BE\)là cạnh chung
Do đó:\(\Delta ABE=\Delta DBE\)(cạnh huyền-cạnh gv)
b)Vì\(\Delta ABE=\Delta DBE\)(cm câu a) nên\(\widehat{ABE}=\widehat{DBE}\)(2 cạnh t/ứ)
Gọi\(K\)là giao điểm của\(AD\)và\(BE\)
Xét\(\Delta ABK\)và\(\Delta DBK\)có:
\(AB=DB\left(GT\right)\)
\(\widehat{ABK}=\widehat{DBK}\left(cmt\right)\)
\(BK\)là cạnh chung
Do đó:\(\Delta ABK=\Delta DBK\)(c-g-c)
\(\Rightarrow\widehat{AKB}=\widehat{DKB}\)(2 góc t/ứ)
\(AK=DK\)(2 cạnh t/ứ)
Ta có:\(\widehat{AKB}+\widehat{DKB}=180^o\)(2 góc KB)
mà\(\widehat{AKB}=\widehat{DKB}\left(cmt\right)\)
\(\Rightarrow\widehat{AKB}=\widehat{DKB}=\frac{180^o}{2}=90^o\)
\(\Rightarrow BK\perp AD\)
mà \(K\)là trung điểm của\(AD\)do\(AK=DK\left(cmt\right)\)
\(\Rightarrow BK\)là đường trung trực của\(AD\)
c)Xét\(\Delta ABC\)và\(\Delta DBF\)có:
\(\widehat{B}\)là góc chung
\(AB=DB\left(GT\right)\)
\(\widehat{BAC}=\widehat{BDF}\left(=90^o\right)\)
Do đó:\(\Delta ABC=\Delta DBF\)(g-c-g)
\(\Rightarrow BC=BF\)(2 cạnh t/ứ)
Xét\(\Delta BCF\)có:\(BC=BF\left(cmt\right)\)
Do đó:\(\Delta BCF\)cân tại\(A\)(Định nghĩa\(\Delta\)cân)
a: Xét ΔBAE có BA=BE
nên ΔBAE cân tại B
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
mà BA=BE
nên BD là trung trực của AE
a) ΔABE = ΔDBE.
Xét hai tam giác vuông ABE và DBE có:
BA = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (cạnh huyền - cạnh góc vuông)
b) BE là đường trung trực của AD.
Gọi giao điểm của AD và BE là I .
Vì ΔABE = ΔDBE (câu a) ⇒ ∠B1 = ∠B2 ( hai góc tương ứng)
Xét ΔABI và ΔDBI có:
BA = BD (gt)
∠B1 = ∠B2 (cmt)
BI : cạnh chung.
Do đó: ΔABI = ΔDBI (c - g - c)
⇒ AI = DI (hai cạnh tương ứng) (1)
∠I1 = ∠I2 (hai góc tương ứng) mà ∠I1 + ∠I2 = 180°
⇒ ∠I1 = ∠I2 = 180° : 2 = 90°
Hay BE ⊥ AD (2)
Từ (1) và (2) suy ra: BE là đường trung trực của AD
c) ΔBCF cân.
Vì ΔABE = ΔDBE (câu a) ⇒ AE = DE (hai cạnh tương ứng)
Xét hai tam giác vuông AEF và DEC có:
AE = DE (cmt)
∠E1 = ∠E2 (đối đỉnh)
Do đó: ΔAEF = ΔDEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = CD (hai cạnh tương ứng)
Ta có: BF = AB + AF và BC = BD + DC (3)
Mà: BA = BD (gt) và AF = DC (cmt) (4)
Từ (3) và (4) suy ra: BF = BC
Hay ΔBFC cân tại B.
d) B, E, H thẳng hàng.
Vì ∠B1 = ∠B2 (câu b)
Nên BE là phân giác của góc B (5)
Xét ΔFBH và ΔCBH có:
BF = BC (câu c)
FH = HC (trung điểm H của BC)
BH : chung
Do đó: ΔFBH = ΔCBH (c - c - c)
⇒ ∠FBH = ∠CBH (hai góc tương ứng)
⇒ BH là phân giác của góc B (6)
Từ (5) và (6) suy ra: B, E, H thẳng hàng.
C là trung điểm của AE
\( \Rightarrow \) BC là trung tuyến của tam giác ABE (1)
D thuộc BC, \(BD = 2DC \Rightarrow BD = 2\left( {BC - BD} \right) \Rightarrow 3BD = 2BC \Rightarrow BD = \dfrac{2}{3}BC\)(2)
Từ (1) và (2) suy ra: D là trọng tâm của tam giác ABE
\( \Rightarrow \) AD là đường trung tuyến ứng với BE
Mà AD là đường phân giác của \(\widehat {BAC}\)
\( \Rightarrow \) Tam giác ABE cân tại A.