K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

Ta cần chưng minh:

\(6\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\le a^2+b^2+c^2\)

\(\Leftrightarrow6\sqrt{\dfrac{\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{16}}\le a^2+b^2+c^2\)

\(\Leftrightarrow\dfrac{9\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{4}\le\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow13\left(a^4+b^4+c^4\right)-10\left(a^2b^2+b^2c^2+c^2a^2\right)\ge0\)

\(\Leftrightarrow3\left(a^4+b^4+c^4\right)+10\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)\ge0\)đung

Dâu = xảy ra khi \(a=b=c=0\) mà cai này coc phải tam giac nên đề bài co vân đề.

13 tháng 1 2018

S = a.b/2

Xét : a^2+b^2/4 - ab/2 = a^2+b^2-2ab/4 = (a-b)^2/4 >= 0

=> ab/2 < = a^2+b^2/4

=> S < = a^2+b^2/4

=> đpcm

Tk mk nha

14 tháng 1 2018

Bạn dưới Nguyễn Anh Quân nhầm rồi ; đây là tam giác thường chứ ko phải tam giác vuông

20 tháng 12 2016

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

Gọi AH,BK,CE lần lượt là các đường cao của ΔABC

Lấy DF,DG,FG lần lượt bằng AH,BK,CE

=>AH:BK:CE=BC:AC:AB(Định lí)

=>AH/BC=BK/AC=CE/AB

=>DF/BC=DG/AC=FG/AB

=>ΔDFG đồng dạng với ΔBCA