Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có MP là đường trung bình tam giác BCN, suy ra P là trung điểm NC. Mặt khác theo định lý Ta-let:
\(\frac{NA}{NP}=\frac{KA}{KM}=\frac{1}{2}\to NP=2NA\to AP=\frac{3}{5}AC\to S_{APM}=\frac{3}{5}S_{AMC}=\frac{3}{5}\cdot30\left(cm^2\right)=18\left(cm^2\right).\)
Mặt khác \(KN\parallel MP,\frac{AN}{AP}=\frac{1}{3}\to\Delta AKN\sim\Delta AMP\) với tỉ số đồng dạng \(k=\frac{1}{3}.\)
Do đó \(\frac{S_{AKN}}{S_{AMP}}=\frac{1}{9}\to S_{AKN}=\frac{1}{9}\cdot18\left(cm^2\right)=2\left(cm^2\right).\)
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên BC=2AM
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay \(AB^2=2\cdot BH\cdot AM\)
Kẻ HN//CM
Xét ΔAMC có HN//CM
nên AH/AM=AN/AC=1/3=HN/CM
=>AH=1/3AM=1/3*2/3*AB=2/9*AB
AH=2/9AB
=>BH/AB=7/9
mà BM/AB=1/3
nên BM/BH=1/3:7/9=1/3*9/7=3/7
Xét ΔBHN có MK//HN
nên MK/HN=BM/BH=3/7
=>MK=3/7HN=3/7*1/3*CM=1/7*CM
=>CK/CM=6/7
S AMC=2/3*S ABC
=>S AKC=6/7*2/3*S ABC=4/7*S ABC
\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)
BC=HB+HC=6,25(cm)
AM=BC/2=3,125(cm)
\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)
\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :
\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)
+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\)
\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\)
\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)
+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :
\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)
\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)
+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :
\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)
Xét tam giác ABH vuông tại H, ta có:
\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)
\(\Rightarrow AB=5\left(cm\right)\)
Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:
\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)
Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)
AM là đường trung tuyến trong tam giác vuông ABC
=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)