Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Kéo dài BI cắt đường song song với AE kẻ từ C tại H, ta có:
\(\Delta\)AMN = \(\Delta\)CHI (g.c.g)
\(\Rightarrow\) AM = CH ; MN = HI
KE là đường trung bình \(\Delta\)BHC
\(\Rightarrow\) KE = \(\frac{CH}{2}\)
Mặt khác DN // BI (DA = DB, NA = NI)
\(\Rightarrow\) AM = MK
Do đó AK = \(\frac{4}{5}\)AE
\(\Rightarrow\) SABK = \(\frac{4}{5}\)SABE = \(\frac{4}{5}.\frac{1}{2}\)SABC
Hay SABK = \(\frac{2}{5}\)SABC (1)
Mà SMKIN = \(\frac{1}{2}\)(MN + KI)h = \(\frac{1}{2}\)KH . h
(MN = IN ; h là khoảng cách giữa hai đường MN và KI)
SABK = \(\frac{BK.2h}{2}\) = BK . h
Vì BK = KH \(\Rightarrow\) SABK = 2 . SMNIK (2)
Từ (1) và (2) \(\Rightarrow\) 2 . SMNIK = \(\frac{2}{5}\)SABC
Vậy SMNIK = \(\frac{1}{5}\)SABC
a) NF là đường trung bình của \(\Delta DBC\)nên \(NF=\frac{1}{2}CD\)
DF là đường trung bình của \(\Delta ABC\)nên \(DF=\frac{1}{2}AB\)
NE là đường trung bình của \(\Delta ABD\)nên \(NE=\frac{1}{2}AB\)
Dễ c/m : NF = ED (t/c cặp đoạn chắn song song)
Vậy NE = ED = DF = NF
Vậy tứ giác ENFD là hình thoi
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD