Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Py-Ta-Go vào tam giác AHB => AB = 3
Sin B = \(\frac{AH}{AB}=\frac{2}{3}\)=> Góc B =41*48**=>Góc C = 48*12**
AC =AB.tanB=3.tanB=2,6
Py-Ta-Go => BC = 3,9
a: Nửa chu vi tam giác ABC là:
\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)
\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)
=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)
=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)
=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HB^2+\dfrac{135}{64}=4\)
=>\(HB^2=\dfrac{121}{64}\)
=>HB=11/8(cm)
HB+HC=BC
=>HC+11/8=4
=>HC=4-11/8=21/8(cm)
b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB
Vì BK\(\perp\)AC và CE\(\perp\)AB
nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)
=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)
=>\(\widehat{BAC}\simeq104^029'\)
Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)
=>\(\widehat{B}\simeq46^034'\)
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}+104^029'+46^034'=180^0\)
=>\(\widehat{ACB}=28^057'\)
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
hay BC=15(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=15cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)
Áp dụng hàm số sin, ta có: \(\frac{a}{\sin A}+\frac{b}{\sin B}+\frac{c}{\sin C}=\frac{a+b+c}{\sin A+\sin B+\sin C}\)
\(\Rightarrow b=\frac{\left(a+b+c\right).\sin B}{\sin A+\sin B+\sin C}\)
\(AH=b\sin C=\frac{\left(a+b+c\right)\sin B.\sin C}{\sin A+\sin B+\sin C}\)
\(\Leftrightarrow AH=\frac{58.\sin58^o20'.\sin82^o35'}{\sin58^o20'+\sin82^o35'+\sin\left(180^o-58^o20'-82^o35'\right)}\approx19,79288\)