K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Áp dụng hàm số sin, ta có: \(\frac{a}{\sin A}+\frac{b}{\sin B}+\frac{c}{\sin C}=\frac{a+b+c}{\sin A+\sin B+\sin C}\)

\(\Rightarrow b=\frac{\left(a+b+c\right).\sin B}{\sin A+\sin B+\sin C}\)

\(AH=b\sin C=\frac{\left(a+b+c\right)\sin B.\sin C}{\sin A+\sin B+\sin C}\)

\(\Leftrightarrow AH=\frac{58.\sin58^o20'.\sin82^o35'}{\sin58^o20'+\sin82^o35'+\sin\left(180^o-58^o20'-82^o35'\right)}\approx19,79288\)

8 tháng 12 2015

Áp dụng Py-Ta-Go vào tam giác AHB => AB = 3

Sin B = \(\frac{AH}{AB}=\frac{2}{3}\)=> Góc B =41*48**=>Góc C = 48*12**

AC =AB.tanB=3.tanB=2,6

Py-Ta-Go => BC = 3,9

18 tháng 11 2023

a: Nửa chu vi tam giác ABC là:

\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)

\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)

=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)

=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)

=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB^2+\dfrac{135}{64}=4\)

=>\(HB^2=\dfrac{121}{64}\)

=>HB=11/8(cm)

HB+HC=BC

=>HC+11/8=4

=>HC=4-11/8=21/8(cm)

b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB

 

Vì BK\(\perp\)AC và CE\(\perp\)AB

nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)

=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)

=>\(\widehat{BAC}\simeq104^029'\)

Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)

=>\(\widehat{B}\simeq46^034'\)

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+104^029'+46^034'=180^0\)

=>\(\widehat{ACB}=28^057'\)

13 tháng 11 2021

a: AH=12cm

25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)