Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban tự vẽ hình nha, mk ko biết up hình lên đây
a) Ta thấy: Tam giác ABC cân tại C (CA = CB)
Xét 2 tg vuông ACI và tg vuông BCI có:
CA = CB (gt)
góc CAI = góc CBI (tg ABC cân tại C)
=> tg ACI = tg BCI (cạnh huyền - góc nhọn)
=> IA = IB (2 cạnh tương ứng)
b) Ta có: IA = IB = 1/2,AB = 1/2.12 = 6 (cm)
Áp dụng định lí Pitago vào tg vuông ACI, có:
\(CA^2=IA^2+IC^2\)
\(\Rightarrow IC^2=CA^2-IA^2\)
\(\Rightarrow IC^2=10^2-6^2=64\)
\(\Rightarrow IC=8\)
Vậy IC = 8 (cm)
c) Xét 2 tg vuông CHI và tg vuông CKI có:
CI là cạnh chung
góc HCI = góc KCI (2 góc tương ứng do tg ACI = tg BCI)
=> tg CHI = tg CKI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
Trong tg vuông ACI, ta có:
\(S\Delta ACI=\frac{IH.CA}{2}=\frac{CI.IA}{2}\)
\(\Rightarrow IH.CA=CI.IA\)
\(\Rightarrow IH=\frac{CI.IA}{CA}=\frac{8.6}{10}=\frac{48}{10}=4,8\)
Vậy IH = IK = 4,8 (cm)
a, Xét tg IAC và tg IBC vuông tại I
Ta có : AC=BC(gt)
AC cạnh chung
Nên : tg IAC = tg IBC
Vậy : IA=IB (đpcm)
b, Ta có : I là giao điểm của AB vì : IA=IB (cmt)
=> IA=IB=12.1/2=6
+Áp dụng định lý pi-ta-go có :
IB2+IC2=BC2
62+IC2=102
IC2 =102-62
IC2 =8
Vậy : IC=8
c, k bt lm
a) Xét \(\Delta ACI\)và \(\Delta BCI\)có :
\(AC=BC\left(GT\right)\)(1)
\(\widehat{CIA}=\widehat{CIB}=90^o\)(2)
\(CI:\)Cạnh chung (3)
Từ (1) ; (2) và (3)
\(\Rightarrow\Delta ACI=\Delta BCI\left(c-g-c\right)\)
\(\Rightarrow AI=BI\)( cặp cạnh tương ứng )
b) Vì \(AI=BI\)( Câu a)
Mà \(AB=12cm\)
\(\Rightarrow AI=BI=6cm\)
Áp dụng định lí PY-ta-go cho tam giác vuông \(CIA\)có :
\(IA^2+IC^2=AC^2\)
\(\Rightarrow6^2+IC^2=10^2\)
\(\Rightarrow36+IC^2=100\)
\(\Rightarrow IC^2=100-36\)
\(\Rightarrow IC^2=64\)
\(\Rightarrow IC=\sqrt{64}\)
\(\Rightarrow IC=8cm\)
c) Xét \(\Delta\perp AHI\)và \(\Delta\perp BKI\)có :
\(\widehat{A}=\widehat{B}\)( vì tam giác ACB cân ) (1)
\(IA=IB\)( câu a ) (2)
\(\widehat{AHI}=\widehat{BKI}=90^o\)(3)
Từ (1);(2)và (3)
\(\Rightarrow\Delta\perp AHI=\Delta\perp BKI\)( Cạnh huyền - góc nhọn )
\(\Rightarrow HI=IK\)( cặp cạnh tương ứng )
a) Xét ΔCAI vuông tại I và ΔCBI vuông tại I có
CA=CB(ΔABC cân tại C)
CI chung
Do đó: ΔCAI=ΔCBI(cạnh huyền-cạnh góc vuông)
Suy ra: IA=IB(hai cạnh tương ứng)
b) Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB(cmt)
\(\widehat{A}=\widehat{B}\)(hai góc ở đáy của ΔBAC cân tại C)
Do đó: ΔIHA=ΔIKB(cạnh huyền-góc nhọn)
Suy ra: IH=IK(hai cạnh tương ứng)
c) Ta có: IA=IB(cmt)
mà IA+IB=AB(I nằm giữa A và B)
nên \(IA=IB=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔCAI vuông tại I, ta được:
\(CA^2=CI^2+AI^2\)
\(\Leftrightarrow CI^2=CA^2-AI^2=10^2-6^2=64\)
hay CI=8(cm)
Vậy: IC=8cm
Xét △ACI và △BCI
Có: AC = BC (gt)
ACI = BCI (gt)
CI là cạnh chung
=> △ACI = △BCI (c.g.c)
b, Vì △ACI = △BCI (cmt)
=> AI = IB (2 cạnh tương ứng)
và AIC = BIC (2 góc tương ứng)
Mà AIC + BIC = 180o (2 góc kề bù)
=> AIC = BIC = 180o : 2 = 90o
=> CI ⊥ AB
c, Ta có: IA + IB = AB => 2IA = 10 => IA = 5 (cm)
Xét △ACI vuông tại I có: CI2 + AI2 = AC2 (định lý Pytago)
=> CI2 = AC2 - AI2 = 132 - 52 = 144
=> CI = 12 (cm)
d, Xét △HCI vuông tại H và △KCI vuông tại K
Có: HCI = KCI (gt)
CI là cạnh chung
=> △HCI = △KCI (ch-gn)
=> IH = IK (2 cạnh tương ứng)
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó; ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên IA=6cm
=>IC=8cm
a) Xét hai Δ vuông ACI và Δ BCI ta có:
CICI chung
AC=BCAC=BC
Góc AICAIC=Góc BICBIC=90oo
⇒ Δ ACI=ΔBCIACI=ΔBCI (ch-cgv)
⇒ IA=IBIA=IB (hai cạnh tương ứng bằng nhau)
b) Do `CA=CB=10cmnênnênΔ ABCcânđỉnhCnêngóccânđỉnhCnêngócCAB=gócgócCBA`
hay góc HAIHAI=góc KBIKBI
Xét Δ vuông IHAIHA và Δ IKBIKB có:
IA=IBIA=IB (chứng minh trên)
góc HAIHAI=góc KBIKBI
Góc AHI=BKI=90o90o
⇒ Δ IHAIHA = Δ IKBIKB (ch-gn)
⇒IH=IKIH=IK (hai cạnh tương ứng bằng nhau)
c) IA=IBIA=IB=122122=66
Áp dụng định lý Pytago vào Δ vuông ACI có:
AC²=AI²+IC²AC²=AI²+IC²
⇒ IC²=AC²−AI²=10²−6²=64IC²=AC²-AI²=10²-6²=64
⇒ IC=8
ta có: CB = CA ( = 10 cm )
=> tam giác ABC cân tại C
Mà CI là đường cao nên CI cũng là đường trung trực
=> IA = IB
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
b: IA=IB=AB/2=6(cm)
=>CI=8(cm)
c: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
a: Xét ΔCIA vuông tại I và ΔCIB vuông tại I có
CA=CB
CI chung
Do đó: ΔCIA=ΔCIB
=>IA=IB
b: Ta có: ΔCIA=ΔCIB
=>\(\widehat{ACI}=\widehat{BCI}\)
Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
=>IH=IK
c: Ta có: ΔCAI=ΔCBI
=>AI=BI
=>I là trung điểm của AB
=>\(AI=BI=\dfrac{AB}{2}=6\left(cm\right)\)
ΔCIA vuông tại I
=>\(CI^2+IA^2=CA^2\)
=>\(CI^2=10^2-6^2=64\)
=>\(CI=\sqrt{64}=8\left(cm\right)\)
d: ΔCHI=ΔCKI
=>CH=CK
Xét ΔCAB có \(\dfrac{CH}{CA}=\dfrac{CK}{CB}\)
nên HK//AB
\(\Delta⊥CIA\)và \(\Delta⊥CIB\)có
CA=CB(=10cm)
góc A = góc B ( CA=CB(=10cm) do đó tam giác CAB cân tại C )
do đó \(\Delta CIA=\Delta CIB\)( cạnh huyền - cạnh góc vuông )
suy ra IA = IB ( 2 cạnh tương ứng )
b)