K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

Ban tự vẽ hình nha, mk ko biết up hình lên đây

a) Ta thấy: Tam giác ABC cân tại C (CA = CB)

Xét 2 tg vuông ACI và tg vuông BCI có:

 CA = CB (gt)

góc CAI = góc CBI (tg ABC cân tại C)

=>      tg ACI = tg BCI (cạnh huyền - góc nhọn)

=>      IA = IB (2 cạnh tương ứng)

b) Ta có: IA = IB = 1/2,AB = 1/2.12 = 6 (cm)

Áp dụng định lí Pitago vào tg vuông ACI, có:

\(CA^2=IA^2+IC^2\)

\(\Rightarrow IC^2=CA^2-IA^2\)

\(\Rightarrow IC^2=10^2-6^2=64\)

\(\Rightarrow IC=8\)

Vậy IC = 8 (cm)

c) Xét 2 tg vuông CHI và tg vuông CKI có:

CI là cạnh chung

góc HCI = góc KCI (2 góc tương ứng do tg ACI = tg BCI)

=>  tg CHI = tg CKI (cạnh huyền - góc nhọn)

=>   IH = IK (2 cạnh tương ứng)

Trong tg vuông ACI, ta có:

\(S\Delta ACI=\frac{IH.CA}{2}=\frac{CI.IA}{2}\)

\(\Rightarrow IH.CA=CI.IA\)

\(\Rightarrow IH=\frac{CI.IA}{CA}=\frac{8.6}{10}=\frac{48}{10}=4,8\)

Vậy IH = IK = 4,8 (cm)

21 tháng 5 2016

a, Xét tg IAC và tg IBC vuông tại I

Ta có : AC=BC(gt)

AC cạnh chung

Nên : tg IAC = tg IBC

Vậy : IA=IB (đpcm)

b, Ta có : I là giao điểm của AB vì : IA=IB (cmt)

=> IA=IB=12.1/2=6

+Áp dụng định lý pi-ta-go có :

IB2+IC2=BC2

62+IC2=102

IC2     =102-62

IC2     =8

Vậy : IC=8

c, k bt lm

26 tháng 1 2017

A B C I H K

\(\Delta⊥CIA\)và \(\Delta⊥CIB\)có 

CA=CB(=10cm)

góc A = góc B ( CA=CB(=10cm) do đó tam giác CAB cân tại C )

do đó \(\Delta CIA=\Delta CIB\)( cạnh huyền - cạnh góc vuông )

suy ra IA = IB ( 2 cạnh tương ứng )

b)

12 tháng 4 2020

Xét △ACI và △BCI 

Có: AC = BC (gt)

      ACI = BCI (gt)

   CI là cạnh chung

=> △ACI = △BCI (c.g.c)

b, Vì △ACI = △BCI (cmt)

=> AI = IB (2 cạnh tương ứng)

và AIC = BIC (2 góc tương ứng)

Mà AIC + BIC = 180o (2 góc kề bù)

=> AIC = BIC = 180o : 2 = 90o

=> CI ⊥ AB

c, Ta có: IA + IB = AB   => 2IA = 10 => IA = 5 (cm)

Xét △ACI vuông tại I có: CI2 + AI2 = AC2 (định lý Pytago)

=> CI2 = AC2 - AI2 = 132 - 52 = 144 

=> CI = 12 (cm)

d, Xét △HCI vuông tại H và △KCI vuông tại K

Có: HCI = KCI (gt)

       CI là cạnh chung

=> △HCI = △KCI (ch-gn)

=> IH = IK (2 cạnh tương ứng)

10 tháng 5 2015

A B C H D E

a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...

Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC

=>HB=HC

b) Ta có HB+HC=BC

=>HB=HC=BC/2=8/2=4cm

Ap dụng định lí Py-ta-go vào tam giác BAH ta có

AH2+BH2=AB2

   AH2=AB2-BH2

  AH2= 52-42

AH2=25-16=9

=>AH=3

C)Xét tam giác vuông BDH và CEH ta có 

HB=HC(theo câu a)

Góc B=C(Vì tam giác ABC cân ở A)

=>tam giác BDH=CEH(ch-gn)

=>HD=HE(tương ứng)

Vậy tam giác HDE có HD=HE nên cân ở H

 

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
   AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
   AH mũ 2 + 4 mũ 2    = 5 mũ 2 
   AH mũ 2 + 16           = 25
   AH mũ 2                  = 25 - 16
   AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=) HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=) HD<HC

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C

Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
 AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2    = 5 mũ 2 
AH mũ 2 + 16           = 25
AH mũ 2                  = 25 - 16
AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=> HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=> HD<HC

6 tháng 12 2016

Ta có hình vẽ:

A B C M E F N x y

Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé

a/ Xét tam giác AMB và tam giác AMC có:

AB = AC (GT)

BM = MC (GT)

AM : cạnh chung

=> tam giác AMB = tam giác AMC (c.c.c)

b/ Xét tam giác AEM và tam giác AFM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

AM : cạnh chung

\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)

Vậy tam giác AEM = tam giác AFM (g.c.g)

=> AE = AF (2 cạnh tương ứng)

c/ Xét tam giác EBM và tam giác FCM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

BM = MC (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác EBM = tam giác FCM

(theo trường hợp cạnh huyền góc nhọn)

=> BE = FM (2 cạnh tương ứng) (1)

Ta có: EM: cạnh chung (2)

Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900

=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)

Từ (1),(2),(3) => tam giác BEM = tam giác EFM

=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EF // BC

d/ Xét tam giác ABN và tam giác ACN có:

AB = AC (GT)

\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)

AN: chung

=> tam giác ABN = tam giác ACN (c.g.c)

BN = CN ( 2 cạnh tương ứng)

Xét tam giác BMN và tam giác CMN có:

MN: chung

BM = MC (GT)

BN = CN (đã chứng minh)

=> tam giác BMN = tam giác CMN (c.c.c)

-Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> góc AMB = góc AMC = 900

-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)

=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)

\(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)

=> góc BMN = góc CMN = 900

Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800

hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800

hay A,M,N thẳng hàng

7 tháng 12 2016

cảm ơn bạn nhiều

 

30 tháng 3 2021

các bạn ơi giúp mình với ạ nhờ các bạn giúp nhanh chứ mai mình thi rồi

mau

 

đề có đúng ko bn