K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi giao của AH với BC là M

=>AH vuông góc BC tại M

góc AFH=góc AEH=90 độ

=>AEHF nội tiếp đường tròn đường kính AH

=>IF=IA=IE=IH

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>KF=KE=KB=KC

góc IFH+góc KFH

=góc IHF+góc KCH

=góc KCH+90 độ-góc KCH=90 độ

=>FK vuông góc FI

b: FI=AH/2=3cm

FK=BC/2=4cm

=>IK=căn 3^2+4^2=5cm

a: \(AB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH<AH<AB

=>góc HAB<góc HBA<góc AHB

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

c: góc KAH=góc HAC

góc KHA=góc HAC

=>góc KAH=góc KHA

=>ΔAKH cân tại K

Xét ΔABC có

H là trung điểm của BC

HK//AC

=>K là trung điểm của AB