K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Đường tròn

Câu a:

Xét ΔICM vuông tại I và ΔICN vuông tại I có:

• IC chung
\(\widehat{ICM}=\widehat{ICN}\left(\text{do IC là tia phân giác của }\widehat{ACB}\right)\)

⇒ ΔICM ∼ ΔICN (g - c - g)

⇒ • IM = IN
\(\widehat{IMC}=\widehat{INC}\)

\(\widehat{IMC}+\widehat{IMA}=\widehat{INC}+\widehat{INB}\left(=180^0\right)\)

\(\widehat{IMA}=\widehat{INB}\)

\(\widehat{IMA}+\widehat{A_2}+\widehat{I_1}=\widehat{INB}+\widehat{B_2}+\widehat{I_2}\left(=180^0\right)\)

\(\widehat{A_2}+\widehat{I_1}=\widehat{B_2}+\widehat{I_2}\) (1)

Mặt khác, ΔIAB có: \(\widehat{A_1}+\widehat{B_1}=180^0-\widehat{I_3}=\widehat{I_1}+\widehat{I_2}\)

mà • \(\widehat{A_1}=\widehat{A_2}\left(\text{do IA là tia phân giác của }\widehat{BAC}\right)\)
\(\widehat{B_1}=\widehat{B_2}\left(\text{do IB là tia phân giác của }\widehat{ABC}\right)\)

nên \(\widehat{A_2}+\widehat{B_2}=\widehat{I_1}+\widehat{I_2}\) (2)

Trừ (1) và (2) vế theo vế, suy ra \(\widehat{I_1}-\widehat{B_2}=\widehat{B_2}+\widehat{I_1}\)

\(2\widehat{I_1}=2\widehat{B_2}\)

\(\widehat{I_1}=\widehat{B_2}\)

\(\widehat{IMA}=\widehat{INB}\)

⇒ ΔIMA ∼ ΔBNI (g - g)

⇒ AM . BN = IM . IN = IM2 = IN2 (do IM = IN)

21 tháng 2 2018

Câu b:

Ta có: \(\widehat{I_3}+\widehat{I_1}+\widehat{I_2}=\widehat{IMA}+\widehat{I_1}+\widehat{A_2}\left(=180^0\right)\)

\(\widehat{I_2}=\widehat{A_2}\left(\Delta IMA\text{ ~ }\Delta BNI\right)\)

\(\widehat{I_3}=\widehat{IMA}\)

\(\widehat{A_1}=\widehat{A_2}\)

⇒ ΔIAB ∼ ΔMAI (g - g) ∼ ΔNIB

⇒ • IA2 = AM . AB
• IB2 = NB . AB

Đặt \(P=\dfrac{IA^2}{AB\times AC}+\dfrac{IB^2}{AB\times BC}+\dfrac{IC^2}{AC\times BC}\)

\(=\dfrac{AM\times AB}{AB\times AC}+\dfrac{NB\times AB}{AB\times BC}+\dfrac{CM^2-IM^2}{AC\times BC}\)

\(=\dfrac{AM}{AC}+\dfrac{NB}{BC}+\dfrac{CM^2-AM\times NB}{AC\times BC}\)

\(=\dfrac{AM\times BC+NB\times AC+CM\times CN-AM\times NB}{AC\times BC}\)
(do CM = CN vì ΔICM = ΔICN)

\(=\dfrac{AM\times CN+NB\times AC+CM\times CN}{AC\times BC}\)

\(=\dfrac{AC\times CN+NB\times AC}{AC\times BC}=1\)

Vậy ta có đpcm.

1 tháng 12 2017

bài này ở sách nào v bạn

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.

6 tháng 1 2019

bn tự kẻ hình nhé:

a) Xét  tgiac IAB và tgiac ICA có:

góc I:  chung

góc IAB = góc ICA  (chắn cung AB)

suy ra: tgiac IAB = tgiac ICA  (g.g)

=> IA/IC  =  IB/IA  =  AB/AC

=>  IA/IC . IB/IA = AB/AC . AB/AC

=> IB/IC = AB^2/AC^2   (đpcm)

b) Theo câu a) ta có:

IA/IC = IB/IA = AB/AC = 5/7 

Đặt:  IA = 5k  thì:  IC = 7k;   IB = 25/7 k

Ta có:  IC - IB = BC

=>  \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\) 

=>   \(24=\frac{24}{7}k\)

=>  \(k=7\)

Vậy  IA = 5.7 = 35

        IC = 7.7 = 49

13 tháng 4 2020

100-89=?