Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a) Vì D,E là trung điểm của AC và AB nên ED là đường trung bình của tam giác ABC.
Suy ra ED = \(\frac{BC}{2}\)= \(\frac{4}{2}\)= 2 (cm)
Tứ giác EDCB có ED // BC ( Vì ED là đường trung bình của tam giác ABC) nên EDCB là hình thang.
Vì M, N là trung điểm của EB và CD nên MN là đường trung bình của hình thang EDCB
suy ra MN = \(\frac{ED+BC}{2}\)= \(\frac{2+4}{2}\)=3 (cm).
Vậy MN =3 (cm)
b) Ta có MN// ED ( MN là đương tb củahình thang EDCB) nên MP//ED , QN//ED
Xét tg EBD có MP//ED (cmt)
MB =ME (gt)
Suy ra P là trung điểm của BD ,nên MP là đương tb của tg EBD nên MP= \(\frac{ED}{2}\)=\(\frac{2}{2}\)= 1(cm).
Chứng minh tương tự với tg ECD cũng có QN = 1(cm)
Ta có MN = MP + PQ +QN
3 = 1+PQ +1
QN =1 (cm)
Nên MP=PQ=QN.(đpcm)
Có nhìu chỗ thiếu xót mong mấy bạn thông cảm.
a) Ta có : \(ED=\frac{BC}{2}=\frac{4}{2}=2\left(cm\right)\)
MN là đường trung bình của hình thang BEDC nên ta có :
\(MN=\frac{ED+BC}{2}=\frac{2+4}{2}=3\left(cm\right)\)
b) \(\Delta BED\)có BM = ME(vì M là trung điểm của BE) , mà MP // ED nên BP = PD . Do đó \(MP=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)
\(\Delta\)CED có NC = ND(vì N là trung điểm của CD) , mà NQ // ED nên CQ = CE . Do đó \(NQ=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)
Lại có : PQ = MN - MP - NQ = 3 - 1 - 1 = 1(cm)
Vậy MP = NQ = PQ = 1cm
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó; ED là đường trung bình
=>ED//BC và \(ED=\dfrac{BC}{2}=\dfrac{4}{2}=2\left(cm\right)\)
Xét hình thang EDCB có
M là trung điểm của EB
N là trung điểm của DC
Do đó: MN là đường trung bình
=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)
b: Xét ΔBED có MP//ED
nên MP/ED=BM/BE=1/2
=>MP=1(cm)
Xét ΔCED có QN//ED
nên QN/ED=CN/CD=1/2
=>QN=1(cm)
MP+PQ+QN=MN
nên PQ=MN-MP-QN=1(cm)
=>MP=PQ=QN