Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh BA . BC = 2BD . BE
· Ta có: DBA+ ABC = 900 , EBM +ABC = 900
Þ DBA =EBM (1)
· Ta có: DONA = DOME (c-g-c)
Þ EAN= MEO
Ta lại có: DAB +BAE+ EAN = 900, và BEM +BAE +MEO = 900
Þ DAB= BEM (2)
· Từ (1) và (2) suy ra DBDA đồng dạng DBME (g-g)
= > B D B M = B A B E = > D B . B E = B A . B M = B A . B C 2 = > 2 B D . B E = B A . B C
Do K đối xứng với D qua trung điểm của BC nên ta có
\(BD=CK,BK=CD\)
Dựng đường kính DF của (I). Theo hình , thì ta được ba điểm A, F , K thẳng hàng
ta có\(\widehat{KDL}=\widehat{DIC}\left(=90^0-\widehat{CID}\right)=>\)tam giác IDC = tam giác DKL (g.g), từ đó suy ra
\(\frac{DF}{DK}=\frac{2ID}{DK}=\frac{2DC}{KL}=\frac{KB}{KN}\)
=> tam giác DFK = tam giác KBN (c.g.c)
zì zậy nên : \(\widehat{KNB}=\widehat{DKF}=90^0-\widehat{NKF}\)
=>\(\widehat{KNB}+\widehat{NKF}=90^0,\)do đó \(AK\perp BN\)
b) CD đi qua trung điểm của đường cao AH của D ABC
· Gọi F là giao của BD và CA.
Ta có BD.BE= BA.BM (cmt)
= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A
Mà BCF=BEA(cùng chắn AB)
=>BMD=BCF=>MD//CF=>D là trung điểm BF
· Gọi T là giao điểm của CD và AH .
DBCD có TH //BD = > T H B D = C T C D (HQ định lí Te-let) (3)
DFCD có TA //FD = > T A F D = C T C D (HQ định lí Te-let) (4)
Mà BD= FD (D là trung điểm BF ) (5)
· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .