Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Đường thẳng AB vuông góc với CC’ nên nhận u → (3; 8) làm VTCP và n → (8; -3) làm VTPT
Do đó d có phương trình: 8( x+ 1) -3( y+ 3) = 0 hay 8x- 3y -1= 0
Tọa độ điểm B là nghiệm của hệ phương trình
Từ 3 đường thẳng cho trước , ta xác định được tọa độ của A và B:
xA-3yA+11=0, 3xA+7yA-15 =0 suy ra xA=-2, yA=3
xB-3yB=11=0; 3xB-5yB+13=0, suy ra xB=4; yB=5
a) Gọi đường thẳng qua BC là y=ax+b; vì nó vuông góc với đt AH 3x+7y-15=0, vậy a= 7/3
yB=(7/3).xB+b từ đó b= yB - 7xB/3= 5-7.4/3= -13/3
Vậy đt qua BC có pt: y= 7x/3 -13/3
b) Gọi pt đt qua AC là y=cx+d. c= -5/3 (vì nó vuông góc với đường 3x-5y+13)
d= yA-c.xA= 3+5.(-2)/3= -1/3
Vậy pt đt qua AC là y= -5x/3 -1/3
c) Điểm C là giao điểm của dt BC và AC:
yC= 7xC/3 -13/3 và yC= -5xC/3 -1/3. Từ đó tính ra xC=1; yC=-2.
gọi pt đường cao đi qua C là y=mx+n thì m= -3 (vì nó vuông góc với đt x-3y+11=0.
n=yC-mxC= (-2)-(-3).1=1
Vậy pt đường thảng đi qua đuờng cao hạ từ c là y= -3x+1
Hòa tan 24,4g Na2CO3 va K2CO3 vào nước được dung dịch A.Them vao dung dich A 33,3g CaCl2 thay tao thanh 20g ket tua va dung dich B.Tinh phan tram ve khoi luong moi muoi trong hon hop ban dau
goi B(a; b) N( c; d)
\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)
N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)
2d = -3 +b (3)
B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)
tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)
dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0
tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE
\(\Rightarrow E\left(5;1\right)\). vì ptdt (BE) cung la ptdt qua (BC):
3x+5y-20 =0
tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)
\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)
Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :
x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13
Đường thẳng BC có VTPT n B C → ( 1 ; 3 ) .
Vì A H ⊥ B C nên đường thẳng AH nhận vecto n B C → ( 1 ; 3 ) làm VTCP, một VTPT của AH là: n A H → ( 3 ; − 1 )
Phương trình đường cao AH của tam giác là:
3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0
ĐÁP ÁN B
AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)
\(\Rightarrow A\left(-2;3\right)\)
AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)
\(\Rightarrow B\left(4;5\right)\)
*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)
Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)
BC: \(7x-3y-13=0\)
*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)
Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)
AC: \(5x+3y+1=0\)
\(C\in CK\Rightarrow C\left(x;-\dfrac{3}{8}x-\dfrac{13}{8}\right)\)
\(\Rightarrow\overrightarrow{BC}=\left(x+4;-\dfrac{3}{8}x-\dfrac{53}{8}\right)\)
AH có VTPT là \(\overrightarrow{n}=\left(5;3\right)\)
Do \(AH\) vuông góc \(BC\Rightarrow\overrightarrow{BC}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}x+4=5k\\-\dfrac{3}{8}x-\dfrac{53}{8}=3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{361}{39}\\k=-\dfrac{41}{39}\end{matrix}\right.\Rightarrow C\left(-\dfrac{361}{39};\dfrac{24}{13}\right)\).
\(A\in AH\Rightarrow A\left(x;-\dfrac{5}{3}x+\dfrac{4}{3}\right)\)
\(\Rightarrow\overrightarrow{BA}=\left(x+4;-\dfrac{5}{3}x-\dfrac{11}{3}\right)\)
\(CK\) có VTPT \(\overrightarrow{n}=\left(3;8\right)\)
Do \(CK\) vuông góc \(AB\Rightarrow\overrightarrow{BA}=k\overrightarrow{n}\)
\(\Rightarrow\left\{{}\begin{matrix}x+4=3k\\-\dfrac{5}{3}x-\dfrac{11}{3}=8k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{43}{13}\\k=\dfrac{3}{13}\end{matrix}\right.\Rightarrow A\left(-\dfrac{43}{13};\dfrac{89}{13}\right)\).