Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Áp dụng định lý pitago:
\(AB=\sqrt{5^2-4^2}=\sqrt{9}=3\left(cm\right)\)
b.Xét tam giác ABC và tam giác HAC, có:
\(\widehat{BAC}=\widehat{AHC}=90^o\)
\(\widehat{C}\): chung
Vậy tam giác ABC đồng dạng tam giác HAC ( g.g )
\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\Leftrightarrow AC^2=BC.HC\) ( đfcm )
c.\(\Rightarrow HC=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2\left(cm\right)\)
\(HB=BC-HC=5-3,2=1,8\left(cm\right)\)
d.Áp dụng t/c đường phân giác \(\widehat{BAC}\) có:
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{DC}{4}=\dfrac{DB}{3}=\dfrac{DC+DB}{4+3}=\dfrac{5}{7}\)
\(\Rightarrow DC=\dfrac{5}{7}.4=\dfrac{20}{7}\left(cm\right)\)
e.\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)
a) \(IK\) là đường trung bình của tam giác \(ABC\) nên \(IK=\dfrac{BC}{2}=6\left(cm\right)\).
b) \(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.5.12=30\left(cm^2\right)\)
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a: AD là phân giác
=>BD/AB=CD/AC
=>BD/6=3/9=1/3
=>BD=2cm
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot\left(2+3\right)=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\left(cm^2\right)\)
vì Δ ABC có AH \(\perp\)BC ( H thuộc BC)nên AH là đường cao của Δ ABC
=>\(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.5.4=10cm^2\)
= 10 c m 2